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Abstract

This document describes the IvP Helm - an Open Source behavior-based autonomy applica-
tion for unmanned vehicles. IvP is short for interval programming - a technique for representing
and solving multi-objective optimizations problems. Behaviors in the IvP Helm are reconciled
using multi-objective optimization when in competition with each other for influence of the
vehicle. The IvP Helm is written as a MOOS application where MOOS is a set of Open Source
publish-subscribe autonomy middleware tools. This document describes the configuration and
use of the IvP Helm, provides examples of simple missions and information on how to download
and build the software from the MOOS-IvP server at www.moos-ivp.org.
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1 OVERVIEW

1 Overview

1.1 Purpose and Scope of this Document

The purpose of this document is to provide an overview of the IvP Helm in terms of design consider-
ations, architecture and usage. This document contains references to example missions distributed
with the MOOS-IvP software bundle at www.moos-ivp.org. The example and material herein should
serve as a “getting-started” guide as well as users manual for users looking to go beyond simple
autonomy missions. This document represents work in progress. It is still considered to be in draft
forma and has know omissions. The reader is encouraged to email the authors feedback and look
for later versions.

1.2 Brief Background of MOOS-IvP

MOOS was written by Paul Newman in 2001 to support operations with autonomous marine
vehicles in the MIT Ocean Engineering and the MIT Sea Grant programs. At the time Newman
was a post-doc working with John Leonard and has since joined the faculty of the Mobile Robotics
Group at Oxford University. MOOS continues to be developed and maintained by Newman at
Oxford and the most current version can be found at his web site. The MOOS software available in
the MOOS-IvP project includes a snapshot of the MOOS code distributed from Oxford. The IvP
Helm was developed in 2004 for autonomous control on unmanned marine surface craft, and later
underwater platforms. It was written by Mike Benjamin as a post-doc working with John Leonard,
and as a research scientist for the Naval Undersea Warfare Center in Newport Rhode Island. The
IvP Helm is a single MOOS process that uses multi-objective optimization to implement behavior
coordination.

Acronyms

MOOS stands for ”Mission Oriented Operating Suite” and its original use was for the Bluefin
Odyssey I1I vehicle owned by MIT. IvP stands for ”Interval Programming” which is a mathematical
programming model for multi-objective optimization. In the IvP model each objective function is a
piecewise linear construct where each piece is an interval in N-Space. The IvP model and algorithms
are included in the IvP Helm software as the method for representing and reconciling the output of
helm behaviors. The term interval programming was inspired by the mathematical programming
models of linear programming (LP) and integer programming (IP). The pseudo-acronym IvP was
chosen simply in this spirit and to avoid acronym clashing.

1.3 Sponsors of MOOS-IvP

Original development of MOOS and IvP were more or less infrastructure by-products of other
sponsored research in (mostly marine) robotics. Those sponsors were primarily The Office of
Naval Research (ONR), as well as the National Oceanic and Atmospheric Administration (NOAA).
MOOS and IvP are currently funded by Code 31 at ONR, Dr. Don Wagner and Dr. Behzad
Kamgar-Parsi. Testing and development of course work at MIT is further supported by Battelle,
Dr. Robert Carnes. MOOS is additionally supported in the U.K. by EPSRC. Early development of
IvP benefited from the support of the In-house Laboratory Independent Research (ILIR) program
at the Naval Undersea Warfare Center in Newport RI. The ILIR program is funded by ONR.
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1.4 The Software
The MOOS-IvP autonomy software is available at the following URL:

http://www.moos-ivp.org

Follow the links to Software. Instructions are provided for downloading the software from an SVN
server with anonymous read-only access.

1.4.1 Building and Running the Software

This document is written to Release 4.2.1. After checking out the tree from the SVN server as
prescribed at this link, the top level directory should have the following structure:

moos-ivp/
Moose/
M00S-2374-Apr0611/
README. txt
README-LINUX.txt
README-0S-X.txt
README-WINDOWS. txt
README. txt
bin/
build/
build-moos.sh
build-ivp.sh
configure-ivp.sh
ivp/
1lib/
scripts/

Note there is a M00S directory and an IvP sub-directory. The M00S directory is a symbolic link
to a particular MOOS revision checked out from the Oxford server. In the example above this is
Revision 2374 on the Oxford SVN server. This directory is left completely untouched other than
giving it the local name M00S-2374-Apr0611. The use of a symbolic link is done to simplify the
process of bringing in a new snapshot from the Oxford server.

The build instructions are maintained in the README files and are probably more up to date
than this document can hope to remain. In short building the software amounts to two steps -
building MOOS and building IvP. Building MOOS is done by executing the build-moos.sh script:

> cd moos-ivp
> ./build-moos.sh

Alternatively one can go directly into the M00OS directory and configure options with ccmake and
build with cmake. The script is included to facilitate configuration of options to suit local use.
Likewise the IvP directory can be built by executing the build-ivp.sh script. The M0OOS tree must
be built before building IvP. Once both trees have been built, the user’s shell executable path must
be augmented to include the two directories containing the new executables:

moos-ivp/M00S/MO0SBin
moos-ivp/bin

11



1 OVERVIEW

At this point the software should be ready to run and a good way to confirm this is to run the
example simulated mission in the missions directory:

> cd moos-ivp/ivp/missions/alpha/
> pAntler alpha.moos

Running the above should bring up a GUI with a simulated vehicle rendered. Clicking the DEPLOY
button should start the vehicle on its mission. If this is not the case, some help and email contact
links can be found at www.moos-ivp.org/support/, or emailing issues@moos-ivp.org.

1.4.2 Operating Systems Supported by MOOS and IvP

The MOOS software distributed by Oxford is well supported on Linux, Windows and Mac OS
X. The software distributed by MIT includes additional MOOS utility applications and the IvP
Helm and related behaviors. These modules are support on Linux and Mac OS X and the software
compiles and runs on Windows but Windows support is limited.

1.5 Where to Get Further Information
1.5.1 Websites and Email Lists

There are two web sites - the MOOS web site maintained by Oxford University, and the MOOS-IvP
web site maintained by MIT. At the time of this writing they are at the following URLs:

http://www.robots.ox.ac.uk/ pnewman/TheM00S/

http://www.moos-ivp.org

What is the difference in content between the two web sites? As discussed previously, MOOS-IvP,
as a set of software, refers to the software maintained and distributed from Oxford plus additional
MOOS applications including the IvP Helm and library of behaviors. The software bundle released
at moos-ivp.org does include the MOOS software from Oxford - usually a particular released version.
For the absolute latest in the core MOOS software and documentation on Oxford MOOS modules,
the Oxford web site is your source. For the latest on the core IvP Helm, behaviors, and MOOS
tools distributed by MIT, the moos-ivp.org web site is the source.

There are two mailing lists open to the public. The first list is for MOOS users, and the second
is for MOOS-IvP users. If the topic is related to one of the MOOS modules distributed from the
Oxford web site, the proper email list is the ”moosusers” mailing list. You can join the ” moosusers”
mailing list at the following URL:

https://lists.csail.mit.edu/mailman/listinfo/moosusers,

For topics related to the IvP Helm or modules distributed on the moos-ivp.org web site that
are not part of the Oxford MOOS distribution (see the software page on moos-ivp.org for help in
drawing the distinction), the ”"moosivp” mailing list is appropriate. You can join the ”moosivp”
mailing list at the following URL:

https://lists.csail.mit.edu/mailman/listinfo/moosivp,
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1.5.2 Documentation

Documentation on MOOS can be found on the Oxford University web site:

http://www.robots.ox.ac.uk/ pnewman/MO0SDocumentation/index.htm

This includes documentation on the MOOS architecture, programming new MOOS applications
as well as documentation on several bread-and-butter applications such as pAntler, pLogger, uMs,
pMO0SBridge, iRemote, iMatlab, pScheduler and more. Documentation on the IvP Helm, behaviors
and autonomy related MOOS applications not from Oxford can be found on the www.moos-ivp.org
web site under the Documentation link. Below is a summary of documents:

List of available MOOS-IvP related documentation

o An Overview of MOOS-IvP and a Brief Users Guide to the IvP Helm Autonomy Software
(this document) - This is the primary document describing the IvP Helm regarding how it
works, the motivation for its design, how it is used and configured, and example configurations
and results from simulation.

e MOOS-IvP Autonomy Tools Users Manual - A users manual for several MOOS applications,
and off-line tools for post-mission analysis collectively referred to as the Alog Toolbox. The
MOOS applications include: pNodeReporter, uTimerScript, uHelmScope, uPokeDB, uSimMarine,
uSimBeaconRange, uSimContactRange, pBasicContactMgr, uXMS, uTermCommand, pMarineViewer,
pEchoVar, and uProcessWatch. These applications are common supplementary tools for run-
ning an autonomy system in simulation and on the water.

o Frtending a MOOS-IvP Autonomy System and Users Guide to the [vPBuild Toolbox - This
document is a users manual for those wishing to write their own IvP Helm behaviors and
MOOS modules. It describes the IvPBehavior and CMOOSApp superclass. It also describes
the IvPBuild Toolbox containing a number of tools for building IvP Functions, the primary
output of behaviors. It provides an example template directory with example IvP Helm
behavior and an example MOOS application along with an example CMake build structure
for linking against the standard software MOOS-IvP software bundle. MIT CSAIL Technical
Report TR-2009-037.

1.6 What’s New in Release 4.2.1 and 4.2

Below is a brief, likely incomplete, summary of changes and fixes notable in Release 4.2/4.2.1
since Release 4.1. The only difference between 4.2.1 and 4.2 is that the uSimContactRange app
was renamed from the uSimActiveSonar app as it was known in 4.2, to avoid a name clash with a
separately developed app by the same name with similar functionality.

pHelmIvP

e Improved support for initializing variables. Users have option of specifying whether variable
initialization should override prevailing values in the MOOSDB or not.

e Journaling of IVPHELM_SUMMARY status reports to reduce log footprint

e Added support for the --example, -e example MOOS block cmdline switch
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e Significant under-the-hood changes to allow for behaviors to produce multiple objective func-
tions each.
alogview

e Many bug-fixes, drawing collective objective functions, scaling etc.
e Ability to view 1D (Depth) objective functions.

Improvements under the hood in preparing for IvPBehaviors producing multiple objective
functions each. Major change to the helm.

Added support for rendering XY Vector objects

Added support for rendering XYRangePulse objects

Added support for rendering XYMarker objects

Handles rare case of empty logfiles - bug fix.

uSimMarine

Revamped code formerly known as iMarineSim

Added Speed-Over-Ground and Heading-Over-Ground

Added support for publishing both a ground-truth and degraded navigation solution. Handing
for testing navigation algorithms.

Better support for external force vectors. Supports uSimCurrent
Documentation added to the MOOS-IvP Autonomy Tools User Manual
Added support for the -—example, —e example MOOS block cmdline switch

pMarineViewer

Stability fixes. A couple bugs caused crashes on Ubuntu systems.

Added support for rendering XY Vector objects

Added support for rendering XYRangePulse objects

Better support for determining the size of the OpGrid rendered

Fixed Datum setting from the MOOS file rather than from the image .info file
Allows for clearing of historical data

pNodeReporter

e Added support for publishing dual node reports when the simulator is publishing both a
ground-truth and degraded navigation solution.
e Added support for the --example, -e example MOOS block cmdline switch

pBasicContactMgr

e - Minor fix to ignore reports with name matching ownship name.
e Added support for the --example, -e example MOOS block cmdline switch
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uHelmScope

e Support for the new IVPHELM_SUMMARY journaling output of the helm
e Color output tied to change in helm decisions.
e Added support for the ——example, —-e example MOOS block cmdline switch

uTimerScript

e Added support for the ——example, —-e example MOOS block cmdline switch

uFunctionVis

e Many bug fixes especially in viewing collective objective functions
e Added support for view 1D (depth) objective functions

uSimCurrent
e A new application for simulating water current, coordinated with uSimMarine via uSimMa-
rine’s FORCE_VECTOR interface.
uSimContactRange
e A new application for simulating an on-board sensor that provides range measurements to
other moving contacts.
uSimBeaconRange

e A new application for simulating an on-board sensor that provides a range measurement to a
beacon where either (a) the vehicle knows where it is but is trying to determine the position
of the beacon via a series of range measurements, or (b) the vehicle does not know where it
is but is trying to determine its own position based on the range measurements from one or
more beacons at known locations.

BHYV _StationKeep

e Improved robustness in low-power mode in detecting zero progress recovering to station point.
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2 Design Considerations of MOOS-IvP

The primary motivation in the design of MOOS-IvP is to build highly capable autonomous systems.
Part of this picture includes doing so at a reduced short and long-term cost and a reduced time
line. By “design” we mean both the choice in architectures and algorithms as well as the choice
to make key modules for infrastructure, basic autonomy and advanced tools available to the public
under an Open Source license. The MOOS-IvP software design is based on three architecture
philosophies, (a) the backseat driver paradigm, (b) publish and subscribe autonomy middleware,
and (c) behavior based autonomy. The common thread is the ability to separate the development
of software for an overall system into distinct modules coordinated by infrastructure software made
available to the public domain.

2.1 Public Infrastructure - Layered Capabilities

The central architecture idea of both MOOS and IvP is the separation of overall capability into
separate and distinct modules. The unique contributions of MOOS and IvP are the methods used
to coordinate those modules. A second central idea is the decision to make algorithms and software
modules for infrastructure, basic autonomy and advanced tools available to the public under an
Open Source license. The idea is pictured in Figure 1. There are three things in this picture - (a)
modules that actually perform a function (the wedges), (b) modules that coordinate other modules
(the center of the wheel), and (c) standard wrapper software use by each module to allow it to be

coordinated (the spokes).
MOOS-IvP ‘

Core

Figure 1: Public Infrastructure - Layered Capabilities: The center of the wheel represents MOOS-IvP Core.
For MOOS this means the MOOSDB and the message passing and scheduling algorithms. For IvP this means the
IvP helm behavior management and the multi-objective optimization solver. The wedges on the wheel represent
individual modules - either MOOS processes or IvP behaviors. The spokes of the wheel represent the idea that each
module inherits from a superclass to grab functionality key to plugging into the core. Each wedge or module contains
a wrapper defined by the superclass that augments the function of the individual module. The darker wedges indicate

publicly available modules and the lighter ones are modules added by users to augment the public set to comprise a
particular fielded autonomy system.

Basic capability modules.
Fair game for replacing or improving.
Publicly available along with the infrastructure.

Infrastructure for
Module connection

Infrastructure for
Module coordination

Additional capability modules. ]
| Non-public, perhaps proprietary

The darker wedges in Figure 1 represent application modules (not infrastructure) that provide
basic functionality and are publicly available. However, they do not hold any special immutable
status. They can be replaced with a better version, or, since the source code is available, the
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code of the existing module can be changed or augmented to provide a better or different version
(hopefully with a different name - see the section on branching below). Later sections provide an
overview of about 40 or so particular modules that are currently available. By modules we mean
MOOS applications and IvP behaviors and the above comments hold in either case. The white
wedges in Figure 1 represent the imaginable unimplemented modules or functionality. A particular
fielded MOOS-IvP autonomy system typically is comprised of (a) the MOOS-IvP core modules, (b)
some of the publicly available MOOS applications and IvP behaviors, and (c) additional perhaps
non-public MOOS applications and IvP behaviors provided by one or more 3rd party developers.

The objective of the public-infrastructure/layered-capabilities idea is to strike an important bal-
ance - the balance between effective code re-use and the need for users to retain privacy regarding
how they choose to augment the public codebase with modules of their own to realize a partic-
ular autonomy system. The benefits of code re-use are an important motivation in fundamental
architecture decisions in both MOOS and IvP. The modules that comprise the public MOOS-IvP
codebase described in this document represent over twenty work-years of development effort. Fur-
thermore, certain core components of the codebase have had hundreds if not thousands of hours of
usage on a dozen or so fielded platform types in a variety of situations. The issue of code re-use is
discussed next.

2.2 Code Re-Use

Code re-use is critical, and starts with the ability to have a system comprised of separate but
coordinated modules. They key technical hurdle is to achieve module separation without invoking
a substantial hit on performance. In short, MOOS middleware is a way of coordinating separate
processes running on a single computer or over several networked computers. IvP is a way of
coordinating several autonomy behaviors running within a single MOOS process.

Factors Contributing to Code Re-use:

e Freedom from proprietary issues. Software serving as infrastructure shared by all compo-
nents (MOOS processes and IvP behaviors) are available under an Open Source license. In
addition many mature MOOS and IvP modules providing commonly needed capabilities are
also publicly available. Proprietary or non-publicly released code may certainly co-exist with
non-proprietary public code to comprise a larger autonomy system. Such a system would
retain a strategic edge over competitors if desired, but have a subset of components common
with other users.

e Module independence. Maintaining or augmenting a system comprised of a set of distinct
modules can begin to break down if modules are not independent with simple easy-to-augment
interfaces. Compile dependencies between modules need to be minimized or eliminated. The
maintenance of core software libraries and application code should be decoupled completely
from the issues of 3rd party additional code.

o Simple well-documented interfaces. The effort required to add modules to the code base
should be minimized. Documentation is needed for both (a) using the publicly available
applications and libraries, and (b) guiding users in adding their own modules.

e Freedom to innovate. The infrastructure does not put undue restrictions on how basic prob-
lems can be solved. The infrastructure remains agnostic to techniques and algorithms used

17



2 DESIGN CONSIDERATIONS OF MOOS-1VP

in the modules. No module is sacred and any module may be replaced.
Benefits of Code Re-Use:

e Diversity of contributors. Increasingly, an autonomy system contains many components that
touch many areas of expertise. This would be true even for a vanilla use of a vehicle, but
is compounded when considering the variety of sensors and missions and ways of exploiting
sensors in achieving mission objectives. A system that allows for wide code re-use is also a
system that allows module contributions from a wide set of developers or experts. This has a
substantial impact on the issues mentioned below of lower cost, higher quality and reliability,
and reduced development time line.

e Lower cost. One immediate benefit of code re-use is the avoidance of repeatedly re-inventing
modules. A group can build capabilities incrementally and experts are free to concentrate
on their area and develop only the modules that reflect their skill set and interests. Perhaps
more important, code re-use gives the systems integrator choices in building a complete
system from individual modules. Having choices leads to increased leverage in bargaining for
favorable licensing terms or even non-proprietary terms for a new module. Favorable licensing
terms arranged at the outset can lead to substantially lower long-term costs for future code
maintenance or augmentation of software.

e Higher performance capability. Code re-use enhances performance capability in two ways.
First, since experts are free to be experts without re-inventing the modules outside their
expertise and provided by others, their own work is more likely to be more focused and
efficient. They are likely to achieve a higher capability for a given a finite investment and
given finite performance time. Second, since code re-use gives a systems integrator choices,
this creates a meritocracy based on optimal performance-cost ratio of candidate software
modules. The under-capable, more expensive module is less likely to diminish the overall
autonomy capability if an alternative module is developed to offer a competitive choice.
Survival of the fittest.

e Higher performance reliability. An important part of system reliability is testing. The more
testing time and the greater diversity of testing scenarios the better. And of course the more
time spent testing on physical vehicles versus simulation the better. By making core compo-
nents of a codebase public and permitting re-use by a community of users, that community
provides back an enormous service by simply using the software and complaining when or
if something goes wrong. Certain core components of the MOOS-IvP codebase have had
hundreds if not thousands of hours of usage on a dozen or so platform types in a variety of
situations. And many more hours in simulation. Testing doesn’t replace good coding practice
or formal methods for testing and verifying correctness, but it complements those two aspects
and is enhanced by code re-use.

o Reduced development time line. Code re-use means less code is being re-developed which
leads to quicker overall system development. More subtly, since code re-use can provide a
systems integrator choices and competition on individual modules, development time can be
reduced as a consequent. An integrator may simply accept the module developed the quickest,
or the competition itself may speed up development. If choices and competition result in
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more favorable license agreements between the integrator and developer, this in itself may
streamline agreements for code maintenance and augmentation in the long term. Finally, as
discussed above, if code re-use leads to an element of community-driven bug testing, this will
also quicken the pace in the evolution toward a mature and reliable autonomy system.

2.3 The Backseat Driver Design Philosophy

The key idea in the backseat driver paradigm is the separation between vehicle control and vehicle
autonomy. The vehicle control system runs on a platform’s main vehicle computer and the auton-
omy system runs on a separate payload computer. This separation is also referred to as the mission
controller - wvehicle controller interface. A primary benefit is the decoupling of the platform au-
tonomy system from the actual vehicle hardware. The vehicle manufacturer provides a navigation
and control system capable of streaming vehicle position and trajectory information to the main
vehicle computer, and accepting a stream of autonomy decisions such as heading, speed and depth
in return. Exactly how the vehicle navigates and implements control is largely unspecified to the
autonomy system running in the payload. The relationship is depicted in Figure 2.

Autonomy System
As a Whole

MOOS

(Payload Computer)

Navigation Information T l Heading, Speed, Depth Decisions

Vehicle Navigation and Control System

(Main Vehicle Computer)

Figure 2: The backseat driver paradigm: The key idea is the separation of vehicle autonomy from vehicle control.
The autonomy system provides heading, speed and depth commands to the vehicle control system. The vehicle control
system executes the control and passes navigation information, e.g., position, heading and speed, to the autonomy
system. The backseat paradigm is agnostic regarding how the autonomy system implemented, but in this figure the
MOOS-IvP autonomy architecture is depicted.

The autonomy system on the payload computer consists of a set of distinct processes commu-
nicating through a publish-subscribe database called the MOOSDB (Mission Oriented Operating
Suite - Database). One such process is an interface to the main vehicle computer, and another key
process is the IvP Helm implementing the behavior-based autonomy system. The MOOS commu-
nity is referred to as the “larger autonomy” system, or the “autonomy system as a whole” since
MOOS itself is middleware, and actual autonomous decision making, sensor processing, contact
management etc., are implemented as individual MOOS processes.
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2.4 The Publish-Subscribe Middleware Design Philosophy and MOOS

MOOS provides a middleware capability based on the publish-subscribe architecture and protocol.
Each process communicates with each other through a single database process in a star topology
(Figure 3). The interface of a particular process is described by what messages it produces (publica-
tions) and what messages it consumes (subscriptions). Each message is a simple variable-value pair
where the values are limited to either string or numerical values such as (STATE, ‘DEPLOY’’), or
(NAV_SPEED, 2.2). Limiting the message type reduces the compile dependencies between modules,
and facilitates debugging since all messages are human readable.

[ MOOS Application ]

[ MOOS Application

[ MOOS Application ] [ MOOS Application J

Figure 3: A MOOS community: is a collection of MOOS applications typically running on a single machine each
with a separate process ID. Each process communicates through a single MOOS database process (the MOOSDB)
in a publish-subscribe manner. Each process may be executing its inner-loop at a frequency independent from one
another and set by the user. Processes may be all run on the same computer or distributed across a network.

The key idea with respect to facilitating code re-use is that applications are largely independent,
defined only by their interface, and any application is easily replaceable with an improved version
with a matching interface. Since MOOS Core and many common applications are publicly available
along with source code under an Open Source GPL license, a user may develop an improved module
by altering existing source code and introduce a new version under a different name. The term
MOOS Core refers to (a) the MOOSDB application, and (b) the MOOS Application superclass that
each individual MOOS application inherits from to allow connectivity to a running MOOSDB.
Holding the MOOS Core part of the codebase constant between MOOS developers enables the
plug-and-play nature of applications.

2.5 The Behavior-Based Control Design Philosophy and IvP Helm

The IvP Helm runs as a single MOOS application and uses a behavior-based architecture for
implementing autonomy. Behaviors are distinct software modules that can be described as self-
contained mini expert systems dedicated to a particular aspect of overall vehicle autonomy. The
helm implementation and each behavior implementation exposes an interface for configuration by
the user for a particular set of missions. This configuration often contains particulars such as a
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certain set of waypoints, search area, vehicle speed, and so on. It also contains a specification of
state spaces that determine which behaviors are active under what situations, and how states are
transitioned. When multiple behaviors are active and competing for influence of the vehicle, the
IvP solver is used to reconcile the behaviors (Figure 4).

IvP Function

IvP Function

IvP Function

IvP Helm

\

Information Decision

Figure 4: The IvP Helm: The helm is a single MOOS application running as the process pHelmIvP. It is a behavior-
based architecture where the primary output of a behavior on each iteration is an IvP objective function. The IvP
solver performs multi-objective optimization on the set of functions to find the single best vehicle action, which is
then published to the MOOSDB. The functions are built and the set is solved on each iteration of the helm - typically
one to four times per second. Only a subset of behaviors are active at any given time depending on the vehicle
situation, and the state space configuration provided by the user.

The solver performs this coordination by soliciting an objective function, i.e., utility function,
from each behavior defined over the vehicle decision space, e.g., possible settings for heading, speed
and depth. In the IvP Helm, the objective functions are of a certain type - piecewise linearly
defined - and are called IvP Functions. The solver algorithms exploit this construct to find a rapid
solution to the optimization problem comprised of the weighted sum of contributing functions.

The concept of a behavior-based architecture is often attributed to [9]. Since then various solu-
tions to the issue of action selection, i.e., the issue of coordinating competing behaviors, have been
put forth and implemented in physical systems. The simplest approach is to prioritize behaviors
in a way that the highest priority behavior locks out all others as in the Subsumption Architec-
ture in [9]. Another approach is referred to as the potential fields, or vector summation approach
(See [1], [12]) which considers the average action between multiple behaviors to be a reasonable
compromise. These action-selection approaches have been used with reasonable effectiveness on a
variety of platforms, including indoor robots, e.g., [1], [2], [16], [17], land vehicles, e.g., [18], and
marine vehicles, e.g., [8], [10], [13], [19], [20]. However, action-selection via the identification of
a single highest priority behavior and via vector summation have well known shortcomings later
described in [16], [17] and [18] in which the authors advocated for the use of multi-objective opti-
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mization as a more suitable, although more computationally expensive, method for action selection.
The IvP model is a method for implementing multi-objective function based action-selection that
is computationally viable in the IvP Helm implementation.
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3 A Very Brief Overview of MOOS

MOOS is often described as autonomy “middleware” which can be argued is shorthand for the
glue that connects a collection of applications where the “real” work is going on. MOOS does
indeed connect a collection of applications, of which the IvP Helm is one. However, each appli-
cation inherits a generic MOOS interface whose implementation provides a powerful, easy-to-use
means of communicating with other applications and controlling the relative frequency at which
the application executes its primary set of functions. Due to its combination of ease-of-use, general
extendability and reliability, it has been used in the classroom by students with no prior experience,
as well on many extended field exercises with substantial robotic resources at stake. To frame the
later discussion of the IvP Helm, the basic issues regarding MOOS applications are introduced here.
For further information on MOOS, see [15].

3.1 Inter-process communication with Publish/Subscribe

MOOS has a star-like topology. This is depicted in Figure 3 on page 20. Each application within a
MOOS community (a MOOSApp) has a connection to a single MOOS Database (called MOOSDB)
that lies at the heart of the software suite. All communication happens via this central server
application. The network has the following properties:

e No Peer to Peer communication.

e All communication between the client and server is instigated by the client, i.e., the MOOSDB
never makes a unsolicited attempt to contact a MOOSApp.

Each client has a unique name.

A given client need have no knowledge of what other clients exist.

A client has no way of transmitting data to a given client - it can only be sent to the MOOSDB.

The network can be distributed over any number of machines running any combination of
supported operating systems.

This centralized topology is obviously vulnerable to bottle-necking at the server regardless of
how well written the server is. However the advantages of such a design are perhaps greater than its
disadvantages. Firstly the network remains simple regardless of the number of participating clients.
The server has complete knowledge of all active connections and can take responsibility for the
allocation of communication resources. The clients operate independently with inter-connections.
This prevents rogue clients (badly written or hung) from directly interfering with other clients.

3.2 Message Content

The communications API in MOOS allows data to be transmitted between the MOOSDB and a
client. The meaning of that data is dependent on the role of the client. However the form of that
data is constrained by MOOS. Somewhat unusually MOOS only allows for data to be sent in string
or double form. Data is packed into messages (CMOOSMsg class) which contains other salient
information shown in Table 1.
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Variable Meaning

Name The name of the data

String Value Data in string format

Double Value Numeric double float data

Source Name of client that sent this data to the MOOSDB
Time Time at which the data was written

Data Type Type of data (STRING or DOUBLE)

Message Type Type of Message (usually NOTIFICATION)

Source Community | The community to which the source process belongs

Table 1: The contents of MOOS message

The fact that data is commonly sent in string format is often seen as a strange and inefficient
aspect of MOOS. For example the string "Type=EST,Name=AUV,Pos=[3x1]13.4,6.3,-0.23” might de-
scribe the position estimate of a vehicle called “AUV” as a 3x1 column vector. Typically string data
in MOOS is a concatenation of comma separated "name = value” pairs. It is true that using custom
binary data formats does decrease the number of bytes sent. However binary data is unreadable
to humans and requires structure declarations to decode it and header file dependencies are to be
avoided where possible. The communications efficiency argument is not as compelling as one may
initially think. The CPU cost invoked in sending a TCP /IP packet is largely independent of size up
to about one thousand bytes. So it is as costly to send two bytes as it is one thousand. In this light
there is basically no penalty in using strings. There is however a additional cost incurred in parsing
string data which is far in excess of that incurred when simply casting binary data. Irrespective
of this, experience has shown that the benefits of using strings far outweighs the difficulties. In
particular:

e Strings are human readable.
e All data becomes the same type.
e Logging files are human readable (they can be compressed for storage).

e Replaying a log file is simply a case of reading strings from a file and “throwing” them back
at the MOOSDB in time order.

e The contents and internal order of strings transmitted by an application can be changed
without the need to recompile consumers (subscribers to that data) - users simply would not
understand new data fields but they would not crash.

Of course, scalar data need not be transmitted in string format - for example the depth of a
sub-sea vehicle. In this case the data would be sent while setting the data type to "MOOS_DOUBLE"
and writing the numeric value in the double data field of the message.

3.3 Mail Handling - Publish/Subscribe - in MOOS

Each MOOS application is a client having a connection to the MOOSDB. This connection is made
on the client side and the client manages a private thread that coordinates the communication with
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the MOOSDB. This thread completely hides the intricacies and timings of the communications
from the rest of the application and provides a small, well dened set of methods to handle data
transfer. By having this thread automatically available to each MOOS application, the application
can:

1. Publish data - issue a notification on named data.
2. Register for notifications on named data.

3. Collect notifications on named data - reading mail.

3.3.1 Publishing Data

Data is published as a pair - a variable and value - that constitute the heart of a MOOS message
describe in Table 1. The client invokes the Notify(VarName, VarValue) command where appropriate
in the client code. The above command is implemented both for string values and double values,
and the rest of the fields described in Table 1 are filled in automatically. Each notification results
in another entry in the client’s “outbox”, which is emptied the next time the MOOSDB accepts an
incoming call from the client.

3.3.2 Registering for Notifications

Assume that a list of names of data published has been provided by the author of a particular
MOOS application. For example, a application that interfaces to a GPS sensor may publish data
called GPS_X and GPS_Y. A different application may register its interest in this data by subscribing
or registering for it. An application can register for notifications using a single method Register
specifying both the name of the data and the maximum rate at which the client would like to
be informed that the data has been changed. The latter parameter is specified in terms of the
minimum possible time between notifications for a named variable. For example setting it to zero
would result in the client receiving each and every change notification issued on that variable.

3.3.3 Reading Mail

A client can enquire at any time whether it has received any new notifications from the MOOSDB
by invoking the Fetch method. The function fills in a list of notification messages with the fields
given in Table 1. Note that a single call to Fetch may result in being presented with several
notifications corresponding to the same named data. This implies that several changes were made
to the data since the last client-server conversation. However, the time difference between these
similar messages will never be less than that specified in the Register function described above.
In typical applications the Fetch command is called on the client’s behalf just prior to the Iterate
method, and the messages are handled in the user overloaded OnNewMail method. These methods
are described next.

3.4 Overloaded Functions in MOOS Applications

MOOS provides a base class called CMO0SApp which simplifies the writing of a new MOOS application
as a derived subclass. Beneath the hood of the CMOOSApp class is a loop which repetitively calls
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a function called Iterate() which by default does nothing. One of the jobs as a writer of a new
MOOS-enabled application is to flesh this function out with the code that makes the application
do what we want. Behind the scenes this uber-loop in CM0O0SApp is also checking to see if new data
has been delivered to the application. If it has, another virtual function, OnNewMail (), is called if
this is the spot to write code to process the newly delivered data.

CMOOSApp::Run() |

[ StartUp H CheckMail ]—b[ lterate ]:

_— e —— — — e e ] — e e e e e —

I

| ::OnStartUp()
{ I

I

I

}
I

Figure 5: Key virtual functions of the MOOS application base class: The flow of execution once Run() has
been called on a class derived from CMOOSApp . The scrolls indicate where users of the functionality of CMOOSApp
will be writing new code that implements whatever it is that is wanted from the new applications.

The roles of the three virtual functions in Figure 5 are discussed below. The pHelmIvP application
does indeed inherit from CMOOSApp and overload these three functions. The base class contains
other virtual functions (OnConnectToServer() and OnDisconnectFromServer()) not discussed here
but discussed in [15].

3.4.1 The Iterate() Method

By overriding the CMOOSApp: : Iterate() function in a new derived class, the author creates a function
from which the work that the application is tasked with doing can be orchestrated. In the pHelmIvP
application, this method will consider the next best vehicle decision, typically in the form of deciding
values for the vehicle heading, speed and depth. The rate at which Iterate() is called by the
SetAppFreq() method or by specifying the AppTick parameter in a mission file (see Section 3.5 for
more on configuring an application from a file). Note that the requested frequency specifies the
maximum frequency at which Iterate() will be called - it does not guarantee that it will be called
at the requested rate. For example if you write code in Iterate() that takes 1 second to complete
there is no way that this method can be called at more than 1Hz. If you want to call Iterate()
as fast as is possible simply request a frequency of zero - but you may want to reconsider why you
need such a greedy application.
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3.4.2 The 0nNewMail() Method

Just before Iterate() is called, the CMOOSApp base class determines whether new mail is present,
i.e., whether some other process has posted data for which the client has previously registered,
as described above. If new mail is waiting, the varCMOOSApp base class calls the OnNewMail ()
virtual function, typically overloaded by the application. The mail arrives in the form of a list of
CMOOSMsg objects (see Table 1). The programmer is free to iterate over this collection examining
who sent the data, what it pertains to, how old it is, whether or not it is string or numerical data
and to act on or process the data accordingly.

3.4.3 The 0nStartup() Method

This function is called just before the application enters into its own forever-loop depicted in
Figure 5. This is the application that implements the application’s initialization code, and in
particular reads configuration parameters (including those that modify the default behaviour of
the CMOOSApp base class) from a file. The next section (3.5) addresses the issue of configuring a
MOOS application from a file.

3.5 MOOS Mission Configuration Files

Every MOOS process can read configuration parameters from a mission file which by convention
has a .moos extension. Traditionally MOOS processes share the same mission file to the maximum
extent possible. For example, it is customary for there to be one common mission file for all
MOOS processes running on a given machine. Every MOOS process has information contained in
a configuration block within a *.moos file. The block begins with the statement

ProcessConfig = ProcessName

where ProcessName is the unique name the application will use when connecting to the MOOSDB.
The configuration block is delimited by braces. Within the braces there is a collection of parameter
statements, one per line. Each statement is written as:

ParameterName = Value

where Value can be any string or numeric value. All applications deriving from CMO0SApp inherit
several important configuration options. The most important options for CMO0OSApp derived applica-
tions are CommsTick and AppTick. The latter configures how often the communications thread talks
to the M0O0SDB and the former how often (approximately) Iterate() will be called. An example
configuration block can be found in Listing 8 on page 50.

Parameters may also be defined at the “global” level, i.e., not in any particular process’ configu-
ration block. Three parameters that are mandatory and typically found at the top of all *.moos files
are: ServerHost naming the IP address associated with the MOOSDB server being launched with
this file, ServerPort naming the port number over which the MOOSDB server is communicating
with clients, and Community naming the community comprising the server and clients. An example
is shown in lines 1-3 in Listing 4-A.
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3.6 Launching Groups of MOOS Applications with Antler

Antler provides a simple and compact way to start a MOOS mission comprised of several MOOS
processes, a.k.a., a MOOS “community”. For example if the desired mission file is alpha.moos then
executing the following from a terminal shell:

> pAntler alpha.moos

will launch the required processes for the mission. It reads from its configuration block (which is de-
clared as ProcessConfig=ANTLER) a list of process names that will constitute the MOOS community.
Each process to be launched is specified with a line with the general syntax

Run = procname [ @ LaunchConfiguration ] [ MOOSName ]

where LaunchConfiguration is an optional comma-separated list of parameter=value pairs which col-
lectively control how the process procname (for example pHelmIvP, or pLogger or MOOSDB) is launched.
Exactly what parameters can be specified is outside the scope of this discussion. Antler looks
through its entire configuration block and launches one process for every line which begins with
the RUN= left-hand side. When all processes have been launched Antler waits for all of them to exit
and then quits itself.

There are many more aspects of Antler not discussed here but can be found in the Antler
documentation at the Oxford website (see Section 1.5). These include hooks for altering the console
appearance for each launched process, controlling the search path for specifying how executables
are located on the host file system, passing parameters to launched processes, running multiple
instances of a particular process, and using Antler to launch multiple distinct communities on a
network.

3.7 Scoping and Poking the MOOSDB

An important tool for writing and debugging MOOS applications (and IvP Helm behaviors) is
the ability for the user to interact with an active MOOS community and see the current values of
particular MOOS variables (scoping the DB) and to alter one or more variables with a desired value
(poking the DB). Below are listed tools for scoping and poking respectively. More information on
each can be found on the Oxford or MIT websites, or in in some instances, other parts of this
document.

Tools for scoping the MOOSDB:

e uMS - A GUlI-based tool written in FLTK and maintained and distributed from the Oxford
website.

e uXMS - A terminal-based tool maintained and distributed from the MIT website

e uHelmScope - A terminal-based tool specialized for displaying information about a running
instance of the helm, but it also contains a general-purpose scoping utility similar to uXMS.
Distributed from the MIT website.

e MOOSDB http - The newer releases of MOOS allow the MOOSDB to be configured to run an
http server on the current MOOSDB variable-value pairs, viewable through a web browser.
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Tools for poking the MOOSDB:

e uMS - The GUI-based tool for scoping, listed above, also provides a means for poking. Dis-
tributed from the Oxford website.

e uPokeDB - A light-weight command-line tool for poking one or more variable-value pairs,
with the option of scoping on the before and after values of the poked variable before exiting.
Distributed from the MIT website.

e pMarineViewer - A GUI-based tool primarily used for rendering the paths of vehicles in 2D
space on a Geo display, but also can be configured to poke the DB with variable-value pairs
connected to buttons on the display. Distributed from the MIT website.

e uTermCommand - A terminal-based tool for poking the DB with pre-defined variable-value
pairs. The user can configure the tool to associate aliases (as short as a single character) to
quickly poke the DB. Distributed from the MIT website.

e iRemote - A terminal-based tool for remote control of a robotic platform running MOOS. It
can be configured to associate a pre-defined variable-value poke with any un-mapped key on
the keyboard. Distributed from the Oxford website.

The above list is almost certainly not a complete list for scoping and poking a MOOSDB, but it’s a
decent start.

3.8 A Simple MOOS Application - pXRelay

The bundle of applications distributed from www.moos-ivp.org contains a very simple MOOS ap-
plication called pXRelay. The pXRelay application registers for a single “input” MOOS variable and
publishes a single “output” MOOS variable. It makes a single publication on the output variable
for each mail message received on the input variable. The value published is simply a counter rep-
resenting the number of times the variable has been published. By running two (differently named)
versions of pXRelay with complementary input/output variables, the two processes will perpetuate
some basic publish/subscribe handshaking. This application is distributed primarily as a simple
example of a MOOS application that allows for some illustration of the following topics introduced
up to this point:

e Finding and launching with pAntler example code distributed with the MOOS-IvP software
bundle.

e An example mission configuration file.
e Scoping variables on a running MOOSDB with the uXMS tool.
e Poking the MOOSDB with variable-value pairs using the uPokeDB tool.

o [llustrating the OnStartUp(), OnNewMail (), and Iterate() overloaded functions of the CMOOSApp
base class.

Besides touching on these topics, the collection of files in the pXRelay source code sub-directory is
not a bad template from which to build your own modules.

29



3 A VERY BRIEF OVERVIEW OF MOOS

3.8.1 Finding and Launching the pXRelay Example

The pXRelay example mission should be in the same directory tree containing the source code. See
Section 1.4 on page 11. There is a single mission file, xrelay.moos:

moos-ivp/
M00S/
ivp/
missions/
xrelay/
xrelay.moos <---- The MOOS file

To run this mission from a terminal window, simply change directories and launch:

> cd moos-ivp/ivp/missions/xrelay
> pAntler xrelay.moos

After pAntler has launched each process, there should be four open terminal windows, one for
each pXRelay process, one for uxMs, and one for the MOOSDB itself.

3.8.2 Scoping the pXRelay Example with uXMs

Among the four windows launched in the example, the window to watch is the uXMS window, which
should have output similar to the following (minus the line numbers):

Listing 1 - Example uXMS output after the pXRelay example is launched.

0  VarName (S)ource (T)ime (C)ommunity VarValue

1 (73)
2  APPLES n/a n/a n/a n/a

3  PEARS n/a n/a n/a n/a

4 APPLES_ITER_HZ pXRelay_APPLES 14.93 xrelay 24.93561

5 PEARS_ITER_HZ pXRelay_PEARS 14.94 xrelay 24.93683

6 APPLES_POST_HZ n/a n/a n/a n/a

7  PEARS_POST_HZ n/a n/a n/a n/a

Initially the only thing that is changing in this window is the integer at the end of line 1
representing the number of updates written to the terminal. Here uXMS is configured to scope on
the six variables shown in the VarName column. Column 2 shows which process last posted on the
variable, column 3 shows when the last posting occurred, column 4 shows the community name from
which the post originated, and column 5 shows the current value of the variable. The "n/a" entries
indicate that a process has yet to write to the given variable. For further info on the workings of
uXMs see [4], or type ’h’ to see the help menu.

There are two pXRelay processes running - one under the alias pXRelay APPLES publishing
the variable APPLES as its output variable, APPLES_ITER_HZ indicating the frequency in which the
Iterate() function is executed, and APPLES POST_HZ indicating the frequency at which the output
variable is posted. There is likewise a pXRelay_PEARS process and the corresponding output variables.

3.8.3 Seeding the pXRelay Example with the uPokeDB Tool

Upon launching the pXRelay example, the only variables actively changing are the *_ITER HZ vari-
ables (lines 4-5 in Listing 1) which confirm that the Iterate() loop in each process is indeed being
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executed. The output for the other variables in Listing 1 reflect the fact that the two processes
have not yet begun handshaking. This can be kicked off by poking the APPLES (or PEARS) variable,
which is the input variable for pXRelay PEARS, by typing the following:

> cd moos-ivp/ivp/missions/xrelay
> uPokeDB xrelay.moos APPLES=1

The uPokeDB tool will publish to the MOOSDB the given variable-value pair APPLES=1. It also takes
as an argument the mission file, xrelay.moos, to read information on where the MOOSDB is running
in terms of machine name and port number. The output should look similar to the following:

Listing 2 - Example uPokeDB output after poking the MOOSDB with APPLES=1.

0 PRIOR to Poking the MOOSDB

1 VarName (S)ource (T) ime VarValue
2

3 APPLES

4

5

6 AFTER Poking the MOOSDB

7 VarName (S)ource (T) ime VarValue
8

9 APPLES uPokeDB 40.19 1.00000"

The output of uPokeDB first shows the value of the variable prior to the poke, and then the value
afterwards. Further information on the uPokeDB tool can be found in [4]. Once the MOOSDB has been
poked as above, the pXRelay PEARS application will receive this mail and, in return, will write to
its output variable PEARS, which in turn will be read by pXRelay APPLES and the two processes will
continue thereafter to write and read their input and output variables. This progression can be
observed in the uXMS terminal, which may look something like that shown in Listing 3:

Listing 3 - Example uXMS output after the pXRelay example is seeded.

0  VarName (S)ource (T)ime (C)ommunity  VarValue

1 (221)
2  APPLES pXRelay _APPLES 44.78 xrelay 151

3  PEARS pXRelay _PEARS  44.74 xrelay 151

4  APPLES_ITER_HZ pXRelay_APPLES 44.7 xrelay 24.90495

5 PEARS_ITER_HZ pXRelay_PEARS 44.7 xrelay 24.90427

6  APPLES_POST_HZ pXRelay_APPLES 44.79 xrelay 8.36411

7 PEARS_POST_HZ pXRelay_PEARS 44.74 xrelay 8.36406

Upon each write to the MOOSDB the value of the variable is incremented by 1, and the integer
progression can be monitored in the last column on lines 2-3. The APPLES_POST_HZ and PEARS_POST_HZ
variables represent the frequency at which the process makes a post to the MO0OSDB. This of course
is different than (but bounded above by) the frequency of the Iterate() loop since a post is made
within the Iterate() loop only if mail had been received prior to the outset of the loop. In a
world with no latency, one might expect the “post” frequency to be exactly half of the “iterate”
frequency. We would expect the frequency reported on lines 6-7 to be no greater than 12.5, and in
this case values of about 8.4 are observed instead.
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3.8.4 The pXRelay Example MOOS Configuration File

The mission file used for the pXRelay example, xrelay.moos is discussed here. This file is provided
as part of the MOOS-IvP software bundle under the “missions” directory as discussed above in
Section 3.8.1. It is discussed here in three parts in Listings 4-A through 4-C below.

The part of the xrelay.moos file provides three mandatory pieces of information needed by the
MOOSDB process for launching. The MOOSDB is a server and on line 1 is the IP address for the machine,
and line 2 indicates the port number where clients can expect to find the MOOSDB once it has been
launched. Since each MO0SDB and the set of connected clients form a MOOS “community”, the
community name is provided on line 3. Note the xrelay community name in the xrelay.moos file
and the community name in column 4 of the uXMS output in Listing 1 above.

Listing 4-A - The xrelay.moos mission file for the pXRelay example.

ServerHost = localhost
ServerPort = 9000
Community = xrelay

//
// Antler configuration block
ProcessConfig = ANTLER

{

9 MSBetweenLaunches = 200

0 ~N O U WwN -

MOOSDB @ NewConsole = true

pXRelay @ NewConsole = true ~ pXRelay_PEARS
pXRelay @ NewConsole = true ~ pXRelay_APPLES
uXMS @ NewConsole = true

11 Run
12 Run
13 Run
14 Run

The configuration block in lines 7-15 of xrelay.moos is read by the pAntler for launching the
processes or clients of the MOOS community. Line 9 specifies how much time, in milliseconds,
between the launching of processes. Lines 11-14 name the four MOOS applications launched in this
example. On these lines, the component "NewConsole = true" determines whether a new console
window will be opened for each process. Try changing them to false - only the uXMS window really
needs to be open. The others merely provide a visual confirmation that a process has been launched.
The ”~ pXRelay_PEARS” component of lines 12 and 13 tell pAntler to launch these applications with
the given alias. This is required here since each MOOS client needs to have a unique name, and in
this example two instances of the pXRelay process are being launched.

In lines 17-39 in Listing 4-B below, the two pXRelay applications are configured. Note that the
argument to ProcessConfig on lines 20 and 32 is the alias for pXRelay specified in the Antler con-
figuration block on lines 12 and 13. Each pXRelay process is configured such that its incoming and
outgoing MOOS variables complement one another on lines 25-26 and 37-38. Note the AppTick pa-
rameter (see Section 3.4.1) is set to 25 in both configuration blocks, and compare with the observed
frequency of the Iterate() function reported in the variables APPLES_ITER HZ and PEARS_ITER_HZ in
Listing 1. MOOS has done a pretty faithful job in this example of honoring the requested frequency
of the Iterate() loop in each application.

Listing 4-B - The xrelay.moos mission file - configuring the pXRelay processes.

17 //
18 // pXRelay config block
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19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

ProcessConfig = pXRelay_APPLES
{

AppTick = 25
CommsTick = 25
OUTGOING_VAR = APPLES
INCOMING_VAR = PEARS
}
1/

// pXRelay config block

ProcessConfig = pXRelay_PEARS
{

AppTick = 25
CommsTick = 25
INCOMING_VAR = APPLES
OUTGOING_VAR = PEARS

In the last portion of the xrelay.moos file, shown in Listing 4-C below, the uXMS process is
configured. In this example, uXMS is configured to scope on the six variables specified on lines 54-59
to give the output shown in Listings 1 and 3. By setting the PAUSED parameter on line 49 to false,
the output of uXMS is continuously and automatically updated - in this case four times per second
due to the rate of 4Hz specified in lines 46-47. The DISPLAY_* parameters in lines 50-52 ensure that
the output in columns 2-4 of the uxMS output is expanded. See [4] for further ways to configure the
uXMs tool.

Listing 4-C - The xrelay.moos mission file for the pXRelay example - configuring uXMS.

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

//

// uXMS config block

ProcessConfig = uXMS

{
AppTick =4
CommsTick = 4
PAUSED = false
DISPLAY_SOURCE = true
DISPLAY_TIME = true
DISPLAY_COMMUNITY = true
VAR = APPLES
VAR = PEARS
VAR = APPLES_ITER_HZ
VAR = PEARS_ITER_HZ
VAR = APPLES_POST_HZ
VAR = PEARS_POST_HZ

}

3.8.5 Suggestions for Further Things to Try with this Example

e Take a look at the OnStartUp() method in the XRelay.cpp class in the pXRelay module in the
software bundle to see how the handling of parameters in the xrelay.moos configuration file
are implemented, and the subscription for a MOOS variable.
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e Take a look at the OnNewMail() method in the XRelay.cpp class in the pXRelay module in the
software bundle to see how incoming mail is parsed and handled.

e Take a look at the Iterate() method in the XRelay.cpp class in the pXRelay module in the
software bundle to see an example of a MOOS process that acts upon incoming mail and
conditionally posts to the MOOSDB

e Try changing the AppTick parameter in one of the pXRelay configuration blocks in the xrelay.moos
file, re-start, and note the resulting change in the iteration and post frequencies in the uxms
output.

e Try changing the CommsTick parameter in one of the pXRelay configuration blocks in the
xrelay.moos file to something much lower than the AppTick parameter, re-start, and note the
resulting change in the iteration and post frequencies in the uXMS output.

3.9 MOOS Applications Available to the Public

Below are very brief descriptions of MOOS applications in the public domain. This is by no
means a complete list. It does not include applications outside MIT and Oxford, and it is not
even a complete list of applications from those organizations. For a more in-depth tour of MOOS
applications, see [5].

3.9.1 MOOS Modules from Oxford

e pAntler: A tool for launching a collection of MOOS processes given a mission file. See [15],
[14]. Also, see Section 3.6.

e pMOOSBridge: A tool that allows messages to pass between communities and allows for the
renaming of messages as they are shuffled between communities. See [15], [14].

e pLogger: A logger for recording the activities of a MOOS session. It can be configured to
record a fraction of, or all publications of any number of MOOS variables. See [5], [14].

e pScheduler: A simple tool for generating and responding to messages sent to the MOOSDB
by processes in a MOOS community. See [5], [14].

e uMS: A GUI-Based MOOS scope for monitoring one or more MOOSDBs. See [5], [14].

e uPlayback: An FLTK-based, cross platform GUI application that can load in log files and
replay them into a MOOS community as though the originators of the data were really running
and issuing notifications. See [5], [14].

e iMatlab: An application that allows matlab to join a MOOS community - even if only for
listening in and rendering sensor data. It allows connection to the MOOSDB and access to
local serial ports. See [5], [14].

e iRemote: A terminal-based tool for remote control of a robotic platform running MOOS. It
can be configured to associate a pre-defined variable-value poke with any un-mapped key on
the keyboard. See [5], [14].
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uMvS: A multi-vehicle AUV simulator, capable of simulating any number of vehicles and
acoustic ranging between them and acoustic transponders. The vehicle simulation incor-
porates a full 6 D.O.F vehicle model replete with vehicle dynamics, center of buoyancy /
center of gravity geometry, and velocity dependent drag. The acoustic simulation is also
fairly smart. It simulates acoustic packets propagating as spherical shells through the water
column. See [5], [14].

3.9.2 MOOS Modules from MIT

pBasicContactMgr: The pBasicContactMgr application deals with information about other
known vehicles in its vicinity. It is not a sensor application, but rather handles incoming ” con-
tact reports” which may represent information received by the vehicle over a communications
link, or may be the result of on-board sensor processing. By default the pBasicContactMgr
posts to the MOOSDB summary reports about known contacts, but it also may be configured
to post alerts, i.e., MOOS variables, with select content about one or more of the contacts.

pEchoVar: A lightweight process that runs without user interaction for “echoing” specified
variable-value pairs posted with a follow-on post having different variable name.

pHelmIvP: The IvP Helm, and primary focus of this document.

pMarinePID: An application providing simple PID control for vehicle speed-thrust, heading-
rudder, and depth-pitch.

pNodeReporter: The pNodeReporter application garners vehicle navigation information such
as position, speed, heading, yaw and depth, along with high-level helm information such as
its operation mode, and publishes a summary variable, NODE_REPORT_LOCAL, which is consumed
by viewer applications such as pMarineViewer, and as input to other vehicles participating in
cooperative tasks.

pMarineViewer: A GUI-based tool primarily used for rending the paths of vehicles in 2D
space on a Geo display, but also can be configured to poke the DB with variable-value pairs
connected to buttons on the display. See [1], [7]. Also, see Section 13.

uFunctionVis: A application for live rendering of objective functions produced by the IvP
Helm behaviors. See [7].

uHelmScope: A terminal-based tool specialized for displaying information about a running
instance of the helm, but it also contains a general-purpose scoping utility similar to uXMS.
See [1], [7]. Also, see Section 11.

uPokeDB: A light-weight command-line tool for poking one or more variable-value pairs, with
the option of scoping on the before and after values of the poked variable before exiting.
See [1], [7]. Also, see Sections 3.7 and 3.8.3.

uProcessWatch: An application for monitoring the presence (connection) of a set of MOOS
processes to a running MOOSDB. Status is summarized by a single published variable. See [4], [7].
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uSimContactRange: An application is a tool for simulating an on-board sensor that provides
range measurements to other moving contacts.

uSimBeaconRange: An application is a tool for simulating an on-board sensor that provides a
range measurement to a beacon where either (a) the vehicle knows where it is but is trying
to determine the position of the beacon via a series of range measurements, or (b) the vehicle
does not know where it is but is trying to determine its own position based on the range
measurements from one or more beacons at known locations.

uSimCurrent: The uSimCurrent utility is a tool for simulating water current. It operates by
configuring a current field, a mapping of positions in the x-y plane to a vector representing the
current magnitude and direction at that position. The uSimCurrent subscribes to the vehicle
position, and repeatedly determines the appropriate vector for that position, and publishes
the result in a MOOS variable. This variable is USM_FORCE_VECTOR by default, for

coordination with the uSimMarine simulator.

uSimMarine: A very simple single-vehicle simulator that updates vehicle state based on present
actuator values. Runs locally in the MOOS community associated with the simulated vehicle,
so, unlike uMvs, there is one uSimMarine process running per each vehicle.

uTermCommand: A terminal-based tool for poking the DB with pre-defined variable-value pairs.

The user can configure the tool to associate aliases (as short as a single character) to quickly
poke the DB. See [4], [7].

uTimerScript: A MOOS application that will poke the MOOSDB with pre-defined variable-
value pairs in a script that may repeat. Not unlike pScheduler, but it can do some additional
things such as jump forward or pause in the script based on MOOS notifications. It may also
schedule its events to occur at a random point in a fixed time interval.See [1], [7].

uxMs: A terminal based tool for live scoping on a MOOSDB process. See [1], [7]. Also, see
Sections 3.7 and 3.8.2..
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4 A First Example with MOOS-IvP - the Alpha Mission

In this section a simple mission is described using the IvP Helm. This example is designed to run
in simulation on a single desktop/laptop machine. The mission configuraiton files for this example
are distributed with the source code. Information on how to find these files and launch this mission
are described below in Section 4.1. In this example the vehicle simply traverses a set of pre-defined
given waypoints and returns back to the launch position. The user may re-call the vehicle pre-
maturely before completing the waypoints, and may subsequently command the vehicle to resume
the waypoints at any time. By this example the objective is to touch the following issues:

e Launching a mission with a given mission (.moos) file and behavior (.bhv) file.
e Configuration of MOOS processes, including the IvP Helm, with a .moos file.

Configuration of the IvP Helm (mission planning) with a .bhv file.

Implementation of simple command and control with the IvP Helm.

Interaction between MOOS processes and the helm during normal mission operation.

4.1 Where to Find, and How to Launch the Alpha Example Mission

The example mission should be in the same directory tree containing the source code (See Section
1.4). There are two files - a MOOS file, also mission file or .moos file, and a behavior file or .bhv
file:

moos-ivp/
M00S/
ivp/
missions/
alpha/
alpha.moos <---- The MOOS file
alpha.bhv <---- The Behavior file

To run this mission from a terminal window, simply change directories and launch:

> cd moos-ivp/ivp/missions/alpha
> pAntler alpha.moos

After pAntler has launched each process, the pMarineViewer window should be open and look
similar to that shown in Figure 6. After clicking the DEPLOY button in the lower right corner the
vehicle should start to traverse the shown set of waypoints.
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200  pMarineViewer
Flle BackView GeoAftr Venhicles

Ipha's next waypoint

VName: [alpha X(m):[21.4 Lat [43 825136 Spdmis}: [2.0 Dep(m): 0.0 | Time:[117.9

RETURN

¥

VType: [kayak ¥(m). [18.3 long:[-70.330133 Heading:[119.3 Age-AlS:[0.39 Warp; [2

Figure 6: The Alpha Example Mission - In the Surveying Mode’: A single vehicle is dispatched to traverse
a set of waypoints and, upon completion, traverse to the waypoint (0,0) which is the launch point.

This mission will complete on its own with the vehicle returning to the launch point. Alternatively,
by hitting the RETURN button at any time before the points have been traverse, the vehicle will
change course immediately to return to the launch point, as shown in Figure 7. When the vehicle
is returning as in the figure, it can be re-deployed by hitting the DEPLOY button again.
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200  pMarineViewer
Flle BackView GeoAftr Venhicles

&lpha’s next waypoint

vName: [alpha X(my:[108.3 Lat [+3824108 Spd(mis}: [2.0 Dep(mi:[00 | Time:[251 BERLON

RETURN

VType: [kayak ¥m): [132.5 lang:[-70.329048 Heading: [-38.9 Age-AlS: [0.55 Warp; [2

¥

Figure 7: The Alpha Example Mission - In the Returning Mode’: The vehicle can be commanded to return
prior to the completion of its waypoints by the user clicking the RETURN button on the viewer.

The vehicle in this example is configured with two basic waypoint behaviors. Their configuration
with respect to the points traversed and when each behavior is actively influencing the vehicle, is
discussed next.

4.2 A Closer Look at the Behavior File used in the Alpha Example Mission

The mission configuration of the helm behaviors is provided in a behavior file, and the complete
behavior file for the example mission is shown in Listing 5. Behaviors are configured in blocks
of parameter-value pairs - for example lines 6-17 configure the waypoint behavior with the five
waypoints shown in the previous two figures. This is discussed in more detail in Section 6.3.

Listing 5: The behavior file for the Alpha example.

0 initialize DEPLOY = false
1 initialize RETURN = false
2

3 //

4 Behavior = BHV_Waypoint

5 {

6 name = waypt_survey
7 pwt = 100
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8 condition = RETURN = false
9 condition = DEPLOY = true
10 endflag = RETURN = true
11 perpetual = true

12

13 lead = 8

14 lead_damper = 1

15 speed = 2.0 // meters per second
16 radius = 4.0

17 nm_radius = 10.0

18 points = 60,-40:60,-160:150,-160:180,-100:150,-40
19 repeat = 1

20 }

21

22 //

23 Behavior = BHV_Waypoint

24 {

25 name = waypt_return
26 pwt = 100

27 condition = RETURN = true
28 condition = DEPLOY = true
29 perpetual = true

30 endflag = RETURN = false
31 endflag = DEPLOY = false
32

33 speed = 2.0

34 radius = 2.0

35 nm_radius = 8.0

36 point = 0,0

37 }

The parameters for each behavior are separated into two groups. Parameters such as name,
priority, condition and endflag are parameters defined generally for all IvP behaviors. Param-
eters such as speed, radius, and points are defined specifically for the Waypoint behavior. A
convention used in .bhv files is to group the general behavior parameters separately at the top of
the configuration block.

In this mission, the vehicle follows two sets of waypoints in succession by configuring two
instances of a basic waypoint behavior. The second waypoint behavior (lines 23-37) contains only
a single waypoint representing the vehicle launch point (0,0). It’s often convenient to have the
vehicle return home when the mission is completed - in this case when the first waypoint behavior
has reached its last waypoint. Although it’s possible to simply add (0,0) as the last waypoint of the
first waypoint behavior, it is useful to keep it separate to facilitate recalling the vehicle pre-maturely
at any point after deployment.

Behavior conditions (lines 8-9, 27-28), and endflags (line 10, lines 30-31) are primary tools for
coordinating separate behaviors into a particular mission. Behaviors will not participate unless
each of its conditions are met. The condtions are based on current values of the MOOS variables
involved in the condition. For example, both behaviors will remain idle unless the variable DEPLOY is
set to true. This variable is set initially to be false by the initialization on line 0, and is toggled by
the DEPLOY button on the pMarineViewer GUI shown in Figures 6 and 7. The pMarineViewer MOOS
application is one option for a command and control interface to the helm. The MOOS variables in
the behavior conditions in Listing 5 do not care which process was responsible for setting the value.
Endflags are used by behaviors to post a MOOS variable and value when a behavior has reached
a completion. The notion of completion is different for each behavior and some behaviors have no
notion of completion, but in the case of the waypoint behavior, completion is declared when the
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last waypoint is reached. In this way, behaviors can be configured to run in a sequence, as in this
example, where the returning waypoint behavior will have a necessary condition (line 27) met when
the surveying behavior posts its endflag on line 10.

4.3 A Closer Look at the MOOS Applications In the Alpha Example Mission

Running the example mission involves five other MOOS applications in addition to the IvP helm.
In this section we take a closer look at what those applications do and how they are configured. The
full MOOS file, alpha.moos, used to run this mission is given in full in the appendix. An overview
of the situation is shown in Figure 8.

alpha.moos
alpha.bhv

ﬁ Configure
- IVP ___________ -

(1]
[2]
[ pMarinePID !
) MOOSDB ]
[3) 0 |
e phttr | i

Figure 8: The MOOS processes in the example “alpha” mission: In (1) The helm produces a desired heading
and speed. In (2) the PID controller subscribes for the desired heading and speed and publishes actuation values.
In (3) the simulator grabs the actuator values and the current vehicle pose and publishes a set of MOOS variables
representing the new vehicle pose. In (4) all navigation output is wrapped into a single node-report string to be
consumed by the helm and the GUI viewer. In (5) the pMarineViewer grabs the node-report and renders a new
vehicle posision. The user can interact with the viewer to write limited commmand and control variables to the
MOOSDB.

4.3.1 Antler and the Antler Configuration Block

The pAntler tool is used to orchestrate the launching of all the MOOS processes participating
in this example. From the command line, pAntler is run with a single argument the .moos file.
As it launches processes, it hands each procoess a pointer to this same MOOS file. The Antler
configuration block in this example looks like:

Listing 6 - An example Antler configuration block for the Alpha mission.

0  ProcessConfig = ANTLER

1 {

2 MSBetweenLaunches = 200
3

4

Run = MOOSDB @ NewConsole = false
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5 Run = uSimMarine @ NewConsole = false
6 Run = pNodeReporter @ NewConsole = false
7 Run = pMarinePID @ NewConsole = false
8 Run = pMarineViewer @ NewConsole = false
9 Run = pHelmIvP @ NewConsole = false
10 }

The first parameter on line 2 specifies how much time should be left beteen the launching of
each process. Lines 4-9 specify which processes to launch. The MOOSDB is typically launched
first. The NewConsole switch on each line determines whether a new console window should be
opened with each process. Try switching one or more of these to true as an experiment.

4.3.2 The pMarinePID Application

The pMarinePID application implements a simple PID controller which produces values suitable for
actuator control based on inputs from the helm. In simulation the output is consumed by the
vehicle simulator rather than the vehicle actuatiors.

In short: The pMarinePID application typically gets its info from pHelmIvP; produces info consumed
by uSimMarine or actuator MOOS processes when not running in simulation.

Subcribes to: DESIRED _HEADING, DESIRED_SPEED.

Publishes to: DESIRED RUDDER, DESIRED THRUST.

4.3.3 The uSimMarine Application and Configuration Block

The uSimMarine application is a very simple vehicle simulator that considers the current vehicle
pose and actuator commands and produces a new vehicle pose. It can be initialized with a given
pose as shown in the configuration block used in this example, shown in Listing 7:

Listing 7 - An example uSimMarine configuration block for the Alpha mission.

ProcessConfig = uSimMarine
{

AppTick = 10

CommsTick = 10

START_SPEED
START_HEADING
PREFIX = NAV

0
START_Y =0
0
1

0
1
2
3
4
5 START_X
6
7
8
9
0

1

In short: The uSimMarine application typically gets its info from pMarinePID; produces info con-
sumed by pNodeReporter and itself on the next iteration of uSimMarine

Subcribes to: DESIRED_RUDDER, DESIRED_THRUST, NAV_X, NAV_Y, NAV_SPEED, NAV_HEADING.

Publishes to: NAV_X, NAV_Y, NAV_HEADING, NAV_SPEED.
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4.3.4 The pNodeReporter Application and Configuration Block

An Automated Information System (AIS) is commonplace on many larger marine vessels and is
comprised of a transponder and receiver that broadcasts one’s own vehicle ID and pose to other
nearby vessels equiped with an AIS receiver. It periodically collects all latest pose elements, e.g.,
latitutude and longitude position and latest measured heading and speed, and wraps it up into
a single update to be broadcast. This MOOS process collects pose information by subscribing to
the MOOSDB for NAV_X, NAV_Y, NAV_HEADING, NAV_SPEED, and NAV_DEPTH and wraps it up into a single
MOOS variable called NODE_REPORT_LOCAL. This variable in turn can be subscribed to another MOOS
process connected to an actual serial device acting as an AIS transponder. For our purposes, this
variable is also subscribed to by pMarineViewer for rendering a vehicle pose sequence.

In short: The pNodeReporter application typically gets its info from uSimMarine or otherwise on-
board navigation systems such as GPS or compass; produces info consumed by pMarineViewer and
instances of pHelmIvP running in other vehicles or simulated vehicles.

Subcribes to: NAV_X, NAV_Y, NAV_SPEED, NAV_HEADING.

Publishes to: NODE_REPORT _LOCAL

4.3.5 The pMarineViewer Application and Configuration Block

The pMarineViewer is a MOOS process that subscribes to the MOOS variable NODE_REPORT_LOCAL
and NODE_REPORTwhich contains a vehicle ID, pose and timestamp. It renders the updated vehicle(s)
position. It is a multi-threaded process to allow both communication with MOOS and let the user
pan and zoom and otherwise interact with the GUIL. It is non-essential for vehicle operation, but
essential for visually confirming that all is going as planned.

In short: The pMarineViewer application typically gets its info from pNodeReporter and pHelmIvP;
produces info consumed by pHelmIvP when configured to have command and control hooks (as in
this example).

Subcribes to: NODE_REPORT, NODE_REPORT_LOCAL, VIEW_POINT, VIEW_SEGLIST, VIEW_POLYGON, VIEW_MARKER.

Publishes to: Depends on configuration, but in this example: DEPLOY, RETURN.
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5 The IvP Helm as a MOOS Application

In this section the helm is discussed in terms of its identity as a MOOS application - its MOOS
configuration parameters, its Iterate() loop, its output to the console, and its output in terms of
publications to other applications running in the MOOS community. The helm engagement status
and all-stop status are also introduce since they are the highest level descriptions regarding helm
activity.

5.1 Overview

The IvP Helm is implemented as the MOOS module called pHelmIvP. On the surface it is similar
to any other MOOS application - it runs as a single process that connects to a running MOOSDB
process interfacing solely by a publish-subscribe interface, as depicted in Figure 9. It is configured
from a behavior file, or .bhv file, in addition to the MOOS file used to configure other MOOS
applications. The helm primarily publishes a steady stream of information that drives the platform,
typically regarding the desired heading, speed or depth. It may also publish information conveying
aspects of the autonomy state that may be useful for monitoring, debugging or triggering other
algorithms either within the helm or in other MOOS processes. The helm can be configured to
generate decisions over virtually any user-defined decision space.

.moos
.bhv

Configure

PUBLISH
* Helm decisions
« Status information

SUBSCRIBE
+ Sensor Information
* Command and Control

[ Other MOOSApp J [ Other MOOSApp ] [ Other MOOSApp J

Figure 9: The pHelmIvP MOOS application: The IvP Helm is implemented as the MOOS application pHelmIvP.
The helm is configured with two files - the mission file and behavior file. Once launched it connects to the MOOSDB
along with other MOOS applications performing other functions. Information flowing into the helm include both
sensor information and command and control inputs. The helm produces commands for maneuvering the vehicle
along with other status information produced by active behaviors.

The helm subscribes for sensor information or any other information it needs to make deci-
sions. This information includes navigation information regarding the platform’s current position
and trajectory, information regarding the position or state of other vehicles, or environmental in-
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formation. The information it subscribes for is prescribed by the behaviors themselves, configured
in the .bhv file. In addition to sensor information, the helm also receives some level of command
and control information. For example, in some marine vehicle configurations, one of the “Other
MOOSApp” modules in the figure is a driver for an acoustic modem over which command and
control information may be relayed.

The helm has a couple informative high-level state descriptions, the engagement mode and the
all-stop status, that may be compared to the operation of an automobile. Launching the pHelmIvP
MOOS process is analagous to turning on the car’s engine. Putting the helm in the engaged mode
is like shifting the car from “Park” to “Drive”. And the all-stop status refers whether or not the
car is breaking to a stop. The analogy is summarized below.

IvP Helm Automobile

Engagement:

Engaged / Disengaged

Figure 10: The Helm/Automobile Analogy: The helm and its high-level state descriptions, the engagement mode
and all-stop status, have analogies with the operation of an automobile.

5.2 Helm Engagement

The highest level interface with the helm concerns simply whether it is engaged or disengaged. In
the engaged mode, the helm is likely in the process of executing a mission. In the disengaged mode,
the helm is standing by, likely because it is being asked to stand by, but also because the helm
may have noticed something wrong (generated an all-stop) and subsequently disengaged on its own
and is waiting for re-engagement. In this section we discuss (a) how the engagement is changed,
(b) what it is going on in the helm when it is disengaged, (c) how the helm engagement state is
initialized at start-up. At any point in time after the helm is launched, the helm will post the
MOOS variable IVPHELM ENGAGED with either the value "ENGAGED" or "DISENGAGED". This is posted
on each iteration and registering for this mail is the manner recommended by which other MOOS
applications monitor the helm’s heart beat.

Helm Engagement Transitions

The helm engagement state can be transitioned by writing to the MOOS variable MOOS_MANUAL_QVERIDE.
As Figure 11 depicts, a value of false, which is case insensitive, puts the helm in the ENGAGED state.
A value of true puts it into the DISENGAGED state. When the helm transitions from ENGAGED to
DISENGAGED it makes one more publication to the helm decision variables, each with a value zero.
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This is referred to as the production of an all-stop posting, discussed in more detail in a later
section.

MOOS_MANUAL_OVERIDE = true
All-Stop

MOOS_MANUAL_OVERIDE = false

Figure 11: The Engagement Mode of the IvP Helm: The helm is either ENGAGED or DISENGAGED, depending on
both how the helm is initialized and mail received by the helm after start-up on the variable MOOS_MANUAL_OVERIDE.
The helm may also disengage itself if an all-stop event has been detected.

The variable MOOS_MANUAL_OVERIDE contains the mis-spelling of “override”. However, it is a
variable that has some legacy presence in other MOOS applications such as iRemote. To avoid a
situation where there is an attempt to override the helm, but the request is ignored because of
a (proper) spelling, the helm will also respect transition requests on the properly spelled variable
MOOS_MANUAL_OVERRIDE. This has the drawback however that these two variables could conceivably
have different values in the MOOSDB. This is not a problem but could be confusing for someone
trying to infer the engagement state by opening a scope on the MOOSDB, on either the wrong
variable or the two disagreeing variables. In this case the helm engagement state would be aligned
with the variable with the most recent publication time stamp. In any event, the best way to monitor
the helm engagement state is to scope on the MOOS variable IVPHELM ENGAGEMENT, published by
the helm itself, or use the uHelmScope tool.

The helm may also automatically transition itself from the ENGAGED to the DISENGAGED state
(but never the other way around), by posting and all-stop event. All-stop events and the helm are
discussed separately in Section 5.3. All-stop events are generated by the helm upon finding that
one or more possible error conditions have been detected during the normal execution of its helm
iteration. If the helm disengages due to an all-stop, it can be re-engaged by another MOOS client
posting MOOS_MANUAL_OVERIDE=false, but this is no guarantee that the helm wouldn’t just disengage
again immediately if the same condition persists that caused the all-stop event.

What Is and Isn’t Happening when the Helm is Disengaged

When the helm is in the DISENGAGED state, the MOOS application loop depicted in Figure 5 on page
26 carries on. The OnNewMail() continues to be called and new mail is read and dealt with exactly
as it would if the helm were in the ENGAGED state. The Iterate() loop, however, is truncated to
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virtually a no-op, with the only action being the output of a heartbeat character to the console if
the helm is configured to do so (Section 5.5). No behavior code is called whatsoever. The helm
iteration counter, a key index in the uHelmScope output, is also suspended despite the fact that
technically the Iterate() loop continues to be called.

Initializing the Helm Engagment State at Process Launch Time

The helm, by default, is configured to be initiallly in the DISENGAGED state upon start-up. By setting
the parameter START_ENGAGED=true in the mission file configuration block, the helm will indeed be
in the ENGAGED state upon start-up. This feature was found to have practical use in UUV operations
to allow for rebooting of the autonomy computer to automatically launch the helm, engaged and
ready to accept field commands. This feature should be used with caution, and it may be phased
out in a later software release.

5.3 Helm All-Stop Events and Status

An all-stop event is something that brings the vehicle to a full-stop, with typically zero-speed, zero-
depth commanded. The all-stop status is simply a string describing why the vehicle is at an all-stop.
Sometimes an all-stop indicates a problem, e.g., missing critical sensor information. Sometimes a
vehicle may just stop as part of the mission, e.g., coming to the surface for a GPS fix. The all-stop
status message can be used to discern the two types of situations. In the automobile analogy, an
all-stop is equivalent to hitting the car’s breaks with the intent to stop completely. An all-stop
event will result in the following:

e Zero-values will be posted for all decision variables, DESTRED_SPEED=0, DESIRED_DEPTH=0, etc.

e The helm will possibly transition into the DISENGAGED state (putting the car in ”"park” by
analogy). By default the helm is configured to remain in the ENGAGED state upon an all-stop,
but if configured instead with DISENGAGED_ON_ALLSTOP=true, the helm will indeed disengage
upon an all-stop.

e The reason for the all-stop will be posted to MOOS variable IVPHELM_ALLSTOP. The value of
this variable will be "clear" if there are no all-stop events that have occurred since the helm
has entered the ENGAGED state.

The reasons for all-stop may be:

e No behaviors are active. The helm has absolutely no opinion about any of its decision
variables. In this case, the following would be posted: IVPHELM_ALLSTOP="NoIvPFunctions".

e Some behaviors are active, but decisions are missing on one or more mandatory decision
variables. In this case, the following would be posted: IVPHELM_ALLSTOP="MissingDecVars".

e When the vehicle is disengaged due to manual override, the following would be posted:
IVPHELM_ALLSTOP="ManualOverride".

e One of the behaviors has determined an all-stop is warranted for some reason. For example,
a waypoint behavior that cannot determine own-platform’s current position would declare an
all-stop. In this case, the following would be posted: IVPHELM ALLSTOP="BehaviorError".
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To gain further insight on an all-stop caused by a behavior error, the nature of the error is expressed
in a separate posting to the MOOS BHV_ERROR variable. It’s possible that more than one behavior
error occurred in the helm iteration where the all-stop event occurred, in which case there would
be multiple postings to the BHV_ERROR variable. When the vehicle is engaged and operating free of
an all-stop, the all-stop status is reflected by IVPHELM _ALLSTOP="clear".

Experiment 1: Noting engagement and all-stop status in the Alpha mission.

Issues Explored: (1) The relationship between the MOOS_MANUAL_OVERIDE variable and the helm en-
gagement state and all-stop status. (2) How to visually confirm this relationship.

e Try running the Alpha mission again from Section 4. Note that when the simulation is first
launched, before the DEPLOY button is hit in the pMarineViewer window, the label next to the
vehicle says "alpha (DISENGAGED) (ManualOverride)"

e Try opening a uXMS scope to scope on a few key variables:
$ uXMS alpha.moos MOOS_MANUAL_OVERIDE IVPHELM_ENGAGED IVPHELM_ALLSTOP

Note that MOOS_MANUAL_OVERIDE = "true", IVPHELM ENGAGED = "DISENGAGED", and IVPHELM_ALLSTOP
= "ManualOverride".

e Deploy the vehicle by hitting the DEPLOY button in the pMarineViewer window. Note the changes
in both the vehicle label in the GUI, and the values of the variables in the uXMS scope. Note
that when the all-stop status string is set to "clear", the label in the pMarineViewer window
just doesn’t show it. An absent all-stop status message implies the all-stop status is "clear".

5.4 Parameters for the pHelmIvP MOOS Configuration Block

The following configuration parameters are defined for the IvP Helm. The parameter names are
case insensitive.

Parameter Mandatory | Description
ALLOW_DISENGAGE NO If false (default is true) helm cannot be disengaged.
BEHAVIORS NO The name and location of the behavior configuration file.
COMMUNITY YES Global MOOS parameter. Determines ownship name.
DISENGAGE_ON_ALLSTOP NO If true (default is false) helm will disengage on all-stop.
DOMAIN YES The decision space for the IvP Solver.
OK_SKEW NO Tolerance on the age of incoming mail before rejected as being too old.
OTHER_OVERRIDE_VAR NO Names an additional MOOS Variable acting as MOOS_MANUAL_OVERIDE.
START_ENGAGED NO Determines whether or not the helm is in override mode at start-up.

VERBOSE NO Determines verbosity of terminal output - quiet, terse, or verbose.

Table 2: Configuration parameters for the pHelmIvP block in a typical MOOS mission configuration file.
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The ALLOW_DISENGAGED Parameter

Optional. By setting this parameter to false, the helm cannot be manually overriden (disengaged)
once it has been engaged. This can be dangerous and should be carefully considered, and thus the
default is true. This option was implemented based on experiences with launching UUV autonomy
missions and preventing an inadvertent disengagment due to a remote login to the vehicle. There
was a tendency for some users to use iRemote upon remote login to interact with MOOS, and
iRemote posts MOOS_MANUAL_OVERIDE=true upon launch and connection to the MOOSDB.

The BEHAVIORS Parameter

Optional (sort of). The parameter names the behavior file, i.e., *.bhv file, on the local file system
from which the helm behaviors are read. More than one file may be specified on separate lines, and
the helm will read in all files almost as if they were one single file. This is an optional parameter
because a file could alternatively be specified on the command line. A behavior file must be specified
via one means or the other. If a behavior file is specified both on the command line and in the
pHelmIvP configuration block with this parameter, they will both be used to configure the helm
behaviors.

The COMMUNITY Parameter

The COMMUNITY parameter is defined at the “global” level outside of any MOOS process’ configuration
block. See Section 3.5. The helm reads this parameter and uses its value as the name associated
with “ownship”. It is a mandatory parameter.

The DISENGAGED_ON_ALLSTOP Parameter

Optional. By setting this parameter to true, the helm will disengage when an all-stop event occurs.
The default setting is false.

The DOMAIN Parameter

Mandatory. This parameter prescribes the decision space of the helm. It consists of one line per
decision variable. Each line contains a colon-separated list of four fields. Field one is the domain
variable name, field two is the lower bound value, field three is the higher bound value, and field
four is the number of points in the domain. For example DOMAIN = speed:0:3:16 shown in Listing
8 indicates a domain variable called “speed”, with a lower and upper bound 0 and 3 meters/second
respectively. Since there are 16 points, the speed choices are 0, 0.2, 0.4, ..., 2.8, 3.0. The helm
requires that a decision be made on all listed variables on each iteration of the control loop. If a
variable is used by some behaviors but is not necessarily involved in all decisions, it can be declared
as optional. For example DOMAIN=speed:0:3:16:0ptional.

The 0K_SKEW Parameter

Optional. This parameter sets the allowable skew tolerated by the helm for receiving incoming mail
messages. If a clock skew is detected greater than this value, the message will be ignored. A check
for skews can be disabled by setting 0K_SKEW = ANY. The default value is 60 seconds.
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The O0THER_OVERRIDE_VAR Parameter

Optional. This parameter names a MOOS variable the helm will regard as being synonomous
with the two default variables accepted for manual override, MOOS_MANUAL _OVERRIDE, and the legacy
mispelling of this variable, MOOS_MANUAL_OVERIDE.

The START_ENGAGED Parameter

Optional. This parameter is set to either true or false. The default is false as the helm normally
starts in the Disengaged state and needs to receive MOOS mail on the variable MOOS_MANUAL_OVERIDE
with the value of this variable set to true. When START_ENGAGED is set to true, the helm is in the
Engaged state upon start-up. The issue of helm engagement was discussed in more detail in Section
5.2.

The VERBOSE Parameter

Optional. This parameter affects how much information is written to the terminal on each iteration
of the helm. The possible values are verbose, terse, or quiet. The verbose setting will write a brief
helm report to the terminal on each iteration. With the terse setting minimal output will be
produced, a '* character when not producing helm commands, and a ’$’ character when active and
healthy. With the quiet setting, no output at all will be written to the terminal. The default value
is terse. This setting can be changed after the helm is started by changing the value of HELM_VERBOSE
in the MOOSDB.

An Example pHelmIvP MOOS Configuration Block

Below is an example configuration block for the IvP Helm.

Listing 8 - An example pHelmIvP configuration block.

0 //-—=--—- pHelmIvP configuration block ------------—-
1 ProcessConfig = pHelmIvP

2 {

3  AppTick =4 // Defined for all MOOS processes
4 CommsTick = 4 // Defined for all MOOS processes
5

6 Domain = course:0:359:360

7  Domain = speed:0:3:16

8 Domain = depth:0:500:101

9

10  Behaviors = foobar.bhv

11 VERBOSE = terse

12 OK_SKEW = ANY

13

14  START_ENGAGED false

15 ALLOW_DISENGAGED
16  DISENGAGE_ON_ALLSTOP
17 }

true
false

The APPTICK and COMMSTICK parameters are defined for all MOOS processes (see [15]) and specify
the frequency in which the helm process iterates and communicates with the MOOSDB. The
COMMUNITY parameter is not included in the configuration block because it is specified at the global
level in the mission file.
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5.5 Launching the IvP Helm and Output to the Terminal Window

The IvP Helm can be launched either directly from the command line, or from within Antler. On
the command line the usage is as follows:

If

Usage: pHelmIvP file.moos [file.bhv]...[file.bhv]
[--help|-h] [--version|-v]

[file.moos] Filename to get MOOS config parameters.
[file.bhv] Filename to get IvP Helm config paramters.
[-v] Output version number and exit.

[-h] Output this usage information and exit.

no behavior file is specified in the .moos file then a behavior file must be given on the command

line. Multiple behavior files may be provided. Order of the arguments do not matter - command
line arguments ending in .bhv will be read as behavior files, and those ending with .moos as MOOS

fil

es. The specification of behavior files may also be split between references in the .moos file and the

command line. The duplicate specification of a single file will simply be ignored. Typical start-up
output to the terminal is shown in Listing 9 below.

Listing 9 - Example start-up output generated by the pHelmIvP process.

o G W N~ O

~

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

ok ok o oK oK o K K oK o K 3K ok o K oK o K oK ok o K oK o K K oK oK ok o K K ok oK ok ok o sk ok o K ok ok o Kok K
* *
* This is MOOS Client *
* c. P Newman 2001 *
* *

3%k ok ok ok ok ok 3k ok ok 3k ok ok ok 3k ok ok 3k ok ok ok ok ok ok 3k ok ok ok ok ok ok 3k ok ok 3k ok ok ok ok ok ok 3k ok ok k ok ok ok sk ok %k k

——————————————— MOOS CONNECT
contacting a MOOS server localhost:9000 - try 00001
Contact Made
Handshaking as "pHelmIvP"

Handshaking Complete
Invoking User OnConnect() callback...ok

The IvP Helm (pHelmIvP) is starting....
Loading behavior dynamic libraries....
Loading directory: /Users/mikerb/project-colregs/src/lib_behaviors-colregs
Loading behavior dynamic libraries - FINISHED.
Number of behavior files: 1
Processing Behavior File: bravo.bhv START
Successfully found file: bravo.bhv
InitializeBehavior: found static behavior BHV_Loiter
InitializeBehavior: found static behavior BHV_Loiter
InitializeBehavior: found static behavior BHV_Waypoint
InitializeBehavior: found static behavior BHV_Timer
Processing Behavior File: bravo.bhv END
pHelmIvP is Running:
AppTick @ 4.0 Hz
CommsTick @ 4 Hz
Time Warp @ 1.0
EEERRBEREEERREEERREEEEEERRREERBREEEEERRE R R

The output in lines 0-13 are standard output generated by a MOOS process launched and

successfully connected to a running MOOSDB. Lines 15-30 are start-up output generated unique
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to the IvP Helm and the particular user usage. Behaviors used by the helm are either static or
dynamic. Static behaviors are compiled in to the pHelmIvP executable. Dynamic behaviors are
brought in at run time via shared libraries compiled separately. The helm looks for an environment
variable IVP_BEHAVIOR DIRS for a colon-separated list of directories to search for shared libraries. If
this variable is not set, or if one or more of the directories are not legitimate directories, an error
message will indicate so between what is otherwise line 16 and 18 in Listing 9. This kind of error
may not actually be problematic if the behaviors specified in the behavior file can all be otherwise
successfully found.

For each specified behavior file, the information shown in lines 20-26 is generated to the terminal.
For each behavior configuration in a given .bhv file, a single line is output as in lines 22-25 indicating
that the behavior type is recognized and it is configured properly. A single unrecognized behavior
or improper configuration will result in (a) an error message indicating the offending line number
and file name, (b) the output of the actual offending line, and (c¢) immediate disconnection of the
process from the MOOSDB and exit. (Tip: If the helm is launched with Antler an error during
start-up will result in the closing of the pHelmIvP console window which makes it hard to catch
useful error output for debugging. In this case, the helm should just be launched outside of Antler
in its own terminal window.)

The output on line 31 of Listing 9, a series of dollar sign characters, indicates for each character,
the completion of a single helm iteration - a heartbeat output. This is the output when the VERBOSE
parameter is set to the default setting of terse. When set to quiet no output is generated at all.
When set to verbose, a short multi-line report is generated for each iteration. An example is shown
below in Listing 10:

Listing 10 - An example helm iteration report generated by an active helm.

Tteration: 161  sskkskoskokskokokskokskokskkokokokokokokokokok sk ok ok ok ok ok ok kok ok ok ok ok ok ok
Helm Summary
loiter_a did NOT produce an obj-function

loiter_b produces obj-function - time:0.00 pcs: 9.00000 pwt: 100.00000
waypt_return did NOT produce an obj-function

loiter_timer did NOT produce an obj-function

Number of Objective Functions: 1

DESIRED_SPEED: 2.10

DESIRED_COURSE: 145.00

(End) Iteratiom: 161 scksskskskokokokokoskokokskokokokokokokokokokokok ok ok ok skok ok ok ook ook ok ok ok ok

© 00 N U WN = O

On each iteration the Helm Summary indicates which behaviors produced objective functions
(lines 2-5), and for those that did, it indicates the CPU time needed to generate the function,
the number of pieces in the piecewise linear IvP function, and its priority weight. Following this,
the decision rendered for current iteration is output with one line per decision variable (lines 7-8).
This is a very thin summary of what is going on within the helm and it should be noted that the
uHelmScope tool is a much better suited for monitoring helm activity and debugging. This tool is
described later in Section 11.

5.6 Publications and Subscriptions for IvP Helm

The IvP Helm, like any MOOS process, can be specified in terms of its interface to the MOOSDB,
i.e., what variables it publishes and what variables it subscribes for. It is impossible to provide
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5 THE IVP HELM AS A MOOS APPLICATION

a complete specification here since the helm is comprised of behaviors, and the means to include
any number of third party behaviors. Each behavior is able to post variable-value pairs, published
to the MOOSDB by the helm on behalf of the behavior at the end of the iteration. Likewise, each
behavior may declare to the helm any number of MOOS variables it would like the helm to register
for on its behalf. Barring these variables, published and subscribed for by the helm on behalf of
individual behaviors, this section addresses the remaining portion of the helm’s publish - subscribe
interface.

5.6.1 Variables published by the IvP Helm

Variables published by the IvP Helm are summarized in Table 3 below. The column indicating
frequency is in respect to each helm iteration. A more detailed description of each variable follows
the table.

’ # ‘ Variable ‘ Freq ‘ Description

IVPHELM_SUMMARY Each | Summary of many statistics of the current helm iteration, current mode.

IVPHELM POSTINGS | Each | Recap of all variable-value behavior posting for the current iteration.

IVPHELM_MODESET Once | Description of Helm Hierarchical Mode Declarations.

1
2
3 | IVPHELM_STATEVARS | Rare | List of variables involved in behavior preconditions.
4
5

IVPHELM_ENGAGED Each | Status of the Helm Engagement State ("ENGAGED" or "DISENGAGED").

’ 6 ‘ IVPHELM_ALLSTOP ‘ Rare ‘ Reason for a helm all-stop or ("clear" if no all-stop present).

7 HELM_IPF_COUNT Each | IvP Functions involved in the decision of the most recent iteration.

8 CREATE_CPU Each | Total time needed to create IvP Functions in the most recent iteration.
9 LOOP_CPU Each | Total time in the Iterate() loop of the most recent iteration.
’ 10 ‘ PLOGGER_CMD ‘ Once ‘ A hook to the pLogger to record the behavior file(s).
11 DESIRED_* Most | The result of the Helm in its configured decision space.
12 BHV_IPF Most | String form of IvP functions produced by behaviors.
13 BHV_WARNING Rare | Warning messages generated by helm behaviors.
14 BHV_ERROR Rare | Error messages generated by helm behaviors.

Table 3: Variables published by the IvP Helm.

e IVPHELM SUMMARY: Produced on each iteration of the helm for consumption by the uHelmScope
application. It contains information on the current helm iteration regarding the number of
IvP functions created, create time, solve time, which behaviors are active, running, idle, and
the decision ultimately produced during the iteration. The summary does not include every
component in each summary. Components that have not changed in value since the prior
summary are dropped from the present summary. This is motivate by reducing the log file
footprint for the helm.
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e IVPHELM POSTINGS: Produced on each iteration of the helm for consumption by the uHelmScope
application. It provides a recap of all variable-value postings made by all behaviors on the
current iteration.

e IVPHELM STATEVARS: Produced periodically by the helm for consumption by the uHelmScope
application. It contains a comma-separated list of MOOS variables involved in preconditions
of any behavior, i.e., variables affecting behavior run states.

e IVPHELM DOMAIN: Produced once by the helm at start-up for consumption by the uHelmScope
application. It contains the specification of the IvP Domain in use by the helm.

e IVPHELM_MODESET: Produced once by the helm at start-up for consumption by the uHelmScope
application (see Section 11.) It contains the specification of the Hierarchical Mode Declara~
tions, if any, in use by the helm.

e IVPHELM ENGAGED: Written by the helm on each iteration of the pHelmIvP MOOS application,
regardless of whether the helm is in the engaged state or not. (see Section 5.2). It is either
"ENGAGED" or "DISENGAGED". This is the recommended MOOS variable for regarding as a
“heartbeat” indicator of the helm.

e HELM_IPF_COUNT: Produced on each iteration of the helm. It contains the number of IvP
functions involved in the solver on the current iteration.

e CREATE CPU: The CPU time in seconds used in total by all behaviors on the current iteration
for constructing IvP functions.

e 1.00P_CPU: The CPU time in seconds used by the IvP solver in the current helm iteration.

e BHV_IPF: The helm will publish this variable for each active behavior in the current iteration.
It contains a string representation of the IvP function produced by the behavior. It is used
for visualization by the uFunctionVis application, and for logging and later playback and
analysis.

e PLOGGER CMD: This variable is published with the below value to ensure that the pLogger
application logs the .bhv file along with the other data log files and the .moos file.

"COPY_FILE_REQUEST = filename.bhv"

e DESIRED *: Each of the decision variables in the [vPDomain provided in the helm configuration
will have a separate posting prefixed by DESIRED_ as in DESIRED_SPEED. One exception is that
the variable course will be converted to heading for legacy reasons.

e BHV_WARNING: Although this variable may never be posted, it is the default MOOS variable used
when a behavior posts a warning. A warning may be harmless but deserves consideration.

e BHV_ERROR: Although this variable may never be posted, it is the default MOOS variable used
when a behavior posts what it considers a fatal error - one that the helm will interpret as a
request to generate the equivalent of ALL-STOP.

In addition to the above variables, the helm will post any variable-value pair on behalf of a behavior
that makes the request. These include endflags, runflags, idleflag, activeflags and inactiveflags.
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5.6.2 Variables Subscribed for by the IvP Helm

Variables subscribed for by the IvP Helm are summarized in Table 4 below. A more detailed
description of each variable follows the table.

’ # ‘ Variable Description

1 | MOOS_MANUAL_OVERIDE | Allows for transition of the helm Engagement State.

2 | MOOS_MANUAL_OVERRIDE | Allows for transition of the helm Engagement State.

3 HELM_MAP_CLEAR Resets the helm map that filters successive duplcate publications.

Table 4: Variables subscribed for by the IvP Helm.

e MOOS_MANUAL_OVERIDE: When set to true, usually by a third-party application such as iRemote,
of from a command-and-control communication, the helm may relinquish control. If the helm
was configured with ACTIVE_START = true, it will not relinquish control (this may be changed).

e HELM_VERBOSE: Affects the console output produced by the helm. Legal values are verbose,
terse, Or quiet. See Section 5.5.

e HELM MAP_CLEAR: When received, the helm clears an internal map that is used to surpress
repeated duplicate postings. See Section 5.7.

In addition to the above variables, the helm will subscribe for any variable-value pair on behalf of
a behavior that makes the request. This includes, but is not limited to, variables involved in the
CONDITION and UPDATES parameters available generally for all behaviors.

5.7 Automated Filtering of Successive Duplicate Helm Publications

The helm implements a “duplication filter” to drastically reduce the amount of mail posted by the
helm on behalf of behaviors. This filter has been noted to reduce the overall log file size seen during
in-water exercises by 60-80%. Reductions at this level noticably facilitate the use of post-mission
analysis tools and data archiving. For the most part this filter is operating behind the scenes for the
typical helm user. However, knowledge of it is indeed relevant for users wishing to implement their
own behaviors, and we discusss it here to explain a bit what is behind the variable HELM_MAP_CLEAR
to which the helm subscribes, and listed above in Section 5.6.2.

5.7.1 Motivation for the Duplication Filter

The primary motivation of implementing the duplication filter is to reduce the amount of unneces-
sary mail posted by the helm on behalf behaviors, and thereby greatly reduce the size of log files and
facilitate the post-mission handling of data. By unnecessary we mean successive variable-value pairs
that match exactly in both fields. For sure, there are cases when a behavior developer may not want
this filter, and there are simple ways to bypass the filter for any post. But in most cases, successive
duplicate posts are just redundant and unnecessary. For example, a waypoint behavior named
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“SURVEY” will post, on each helm iteration, the variables PWT_BHV_SURVEY and STATE_BHV_SURVEY in-
dicating the behavior’s priority and run-state. These variable values often remain unchanged for
many successive iterations, and really only need to be posted upon a change.

The uHelmScope tool depends on a number of status variables published by the helm to provide
content for the scope. These variables are the IVPHELM_x variables listed in Table 3. This includes the
variable IVPHELM POSTINGS which is a summary of all variable-value postings made by all behaviors
on the current iteration. This provides the content for the Behavior-Posts section of the uHelmScope
output, described in Section 11.2.3 on page 177. This string can be long, and the point here is that
each unnecessary successive duplicate post by a behavior actually shows up in the log file twice!
They can also clutter the output in the uHelmScope window, but main detriment motivating the
filter is the reduction of log file bloat.

5.7.2 Implementation and Usage of the Duplication Filter

The helm keeps two maps (STL maps in C++), one for string data and one for numerical data:

KEY --> StringValue
KEY --> DoubleValue

The two maps correspond to the two types of message types in MOOS (see Section 3.2 on page 23).
The KEY is typically the MOOS variable name. Inside a behavior implementation, the following
four functions are available:

void postMessage(string varname, string value, string key="");
void postMessage(string varname, double value, string key="");
void postBoolMessage(string varname, bool value, string key="");
void postIntMessage(string varname, double value, string key="");

These functions are available in all behavior implementations because they are defined in the
IvPBehavior superclass, of which all behaviors are subclasses. Before the helm posts a message to
the MOOSDB the filter is applied by a simple check to its map to determine if there is a value match on
the given key. If a match is made, the post will not be made to the MOOSDB on the behavior’s behalf.
The postIntMessage() function is merely a convenience version of the postMessage () function that
rounds the variable value to the nearest integer to further reduce posts when combined with the
filter. The postBoolMessage() ultimately posts a string value "true" or "false".

The default value of the key parameter is the empty string, and in most cases this parameter
can be ommitted without disabling the duplication filter. This is because the KEY used by the caller
is only part of the key actually used by the duplication filter. The actual key is the concatenation
of (a) the behavior name, (b) the variable name, and (c) the key passed by the caller. Thus the
default value, the empty string, still results in a decent key being used by the filter. The key is
augmented by the behavior name because often there is more than one behavior posting messages
on same variable. The optional key parameter is used for two reasons. First, it can be used to
further distinguish posts within a behavior on the same variable name. Second, when the key value
has the special value "repeatable", then no key is used and the duplication filter is disabled for
that variable posting.
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5.7.3 Clearing the Duplication Filter

Occasionally a user, or another MOOS application in the same community as the helm, may want
to “clear” the map used by the helm to implement its duplication filter. This can be done by writing
to variable HELM_MAP_CLEAR, with any value. This may be necessary for the following reason. Suppose
a GUI application subscribes for the variable VIEW_SEGLIST which contains a list of line segments
for rendering. If the viewer application is launched after the variable is published, the application
will only receive the most recent mail on the variable VIEW_SEGLIST. There may be publications to
this variable, made prior to the most recent publication, that are relevant to the GUI application
at launch time. Those publications for the variable VIEW_SEGLIST may not be the most recent from
the perspective of the MOOSDB, but they may be the most recent from the perspective of a particular
behavior in the helm. By clearing the filter, it gives each behavior the chance to once again have
all of its variable-value posts made to the MOOSDB. In the pMarineViewer application, a publication
to HELM_MAP_CLEAR is made upon start-up. Clearing the filter will only clear the way for the next
post for a given variable. It will not result in the publishing to the MOOSDB of the contents of
the maps used by the filter.
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6 IvP Helm Autonomy

6.1 Overview

An autonomous helm is primarily an engine for decision making. The IvP Helm uses a behavior-
based architecture to organize its decision making and is distinctive in the manner in which it
resolves competition between competing behaviors - it performs multi-objective optimization on
their collective output using a mathematical programming model called interval programming. Here
the IvP Helm architecture is described and the means for configuring it given a set of behaviors
and a set of mission objectives.

6.1.1 The Influence of Brooks, Stallman and Dantzig on the IvP Helm

The notion of a behavior-based architecture for implementing autonomy on a robot or unmanned
vehicle is most often attributed to Rodney Brooks’ Subsumption Architecture, [9]. A key principle
at the heart of Brooks’ architecture and arguably the primary reason its appeal has endured, is
the notion that autonomy systems can be built incrementally. Notably, Brooks’ original publi-
cation pre-dated the arrival of Open Source software and the Free Software Foundation founded
by Richard Stallman. Open Source software is not a pre-requisite for building autonomy systems
incrementally, but it has the capability of greatly accelerating that objective. The development of
complex autonomy systems stands to significantly benefit if the set of developers at the table is
large and diverse. Even more so if they can be from different organizations with perhaps even the
loosest of overlap in interest regarding how to use the collective end product.

As discussed in Section 2.5, a key issue in behavior-based autonomy has been the issue of action
selection, and the IvP Helm is distinct in this regard with the use of multi-objective optimization
and interval programming. The algorithm behind interval programming, as well as the term it-
self, was motivated by the mathematical programming model, linear programming, developed by
George Dantzig, [I1]. The key idea in linear programming is the choice of the particular math-
ematical construct that comprises an instance of a linear programming problem - it has enough
expressive flexibility to represent a huge class of practical problems, and the constructs can be ef-
fectively exploited by the simplex method to converge quickly even on very large problem instances.
The constructs used in interval programming to represent behavior output (piecewise linear func-
tions) were likewise chosen to have enough expressive flexibility to handle any current and future
behavior, and due to the opportunity to develop solution algorithms that exploit the piecewise
linear constructs.

6.1.2 Traditional and Non-traditional Aspects of the IvP Behavior-Based Helm

The IvP Helm indeed takes its motivation from early notions of the behavior-based architecture,
but is also quite different in many regards. The notion of behavior independence to temper the
growth of complexity in progressively larger systems is still a principle closely followed in the IvP
Helm. Behaviors may certainly influence one another from one iteration to the next, as we’ll see
in discussions in this section. This was also evident in the Alpha example mission in Section 4
where the completion of the Survey behavior triggered the Return behavior. But within a single
iteration, the output generated by a single behavior is not affected at all by what is generated by
other behaviors in the same iteration. The only inter-behavior “communication” realized within an
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iteration comes when the IvP solver reconciles the output of multiple behaviors. The independence
of behaviors not only helps a single developer manage the growth of complexity, but it also limits
the dependency between developers. A behavior author need not worry that a change in the
implementation of another behavior by another author requires subsequent recoding of one’s own
behavior(s).

Certain aspects of behaviors in the IvP Helm may also be a departure from some notions
traditionally associated (fairly or not) with behavior-based architectures:

e Behaviors have state. IvP behaviors are instances of a class with a fairly simple interface to
the helm. Inside they may be arbitrarily complex, keep histories of observed sensor data, and
may contain algorithms that could be considered “reactive” or “plan-based”.

e Behaviors influence each other between iterations. The primary output of behaviors is their
objective function, ranking the utility of candidate actions. IvP behaviors may also generate
variable-value posts to the MOOSDB observable by behaviors on the next helm iteration. In this
way they can explicitly influence other behaviors by triggering or suppressing their activation
or even affecting the parameter configuration of other behaviors.

e Behaviors may accept externally generated plans. The input to a behavior can be anything
represented by a MOOS variable, and perhaps generated by other MOOS processes outside the
helm. It is allowable to have one or more planning engines running on the vehicle generating
output consumed by one or more behaviors.

e Several instances of the same behavior. Behaviors generally accept a set of configuration
parameters that allow them to be configured for quite different tasks or roles in the same
helm and mission. Different waypoint behaviors, for example, can be configured for different
components of a transit mission. Or different collision avoidance behaviors can be instantiated
for different contacts.

e Behaviors can be run in a configurable sequence. Due to the condition and endflag parame-
ters defined for all behaviors, a sequence of behaviors can be readily configured into a larger
mission plan.

e Behaviors rate actions over a coupled decision space. IvP functions generated by behaviors
are defined over the Cartesian product of the set of vehicle decision variables. This is distinct
from the de-coupled decision making style proposed in [16] and [18] - early advocates of
multi-objective optimization in behavior-based action selection.

6.1.3 Two Layers of Building Autonomy in the IvP Helm

The autonomy in play on a vehicle during a particular mission is the product of two distinct efforts
- (1) the development of vehicle behaviors and their algorithms, and (2) mission planning via the
configuration of behaviors and mode declarations. The former involves the writing of new source
code, and the latter involves the editing of mission behavior files, such as the simple example for
the Alpha example mission in Listing 5 on page 39.
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6.2 Inside the IvP Helm - A Look at the Helm Iterate Loop

Like other MOOS applications, the IvP Helm implements an Iterate() loop within which the basic
function of the helm is executed. Components of the Iterate() loop, with respect to the behavior-
based architecture, are described in this section. The basic flow, in five steps, is depicted in Figure
12. Description of the five components follow.

IvP Function
_________________________ |
]
Variable-Value Pairs 1
]
]
IvP Function :
_________________________ |
1
Variable-Value Pairs 1
1
IvP Function !
_________________________ !
1
Variable-Value Pairs v o
Decision
IvP Helm
Variable-Value Pairs Variable-Value Pairs e

Figure 12: The pHelmIvP Iterate Loop: (1) Mail is read from the MOOSDB. It is parsed and stored in a local
buffer to be available to the behaviors, (2) If there were any mode declarations in the mission behavior file they are
evaluated at this step. (3) Each behavior is queried for its contribution and may produce an IvP function and a
list of variable-value pairs to be posted to the MOOSDB at the end of the iteration, (4) the objective functions are
resolved to produce an action, expressible as a set of variable-value pairs, (5) all variable-value pairs are published to
the MOOSDB for other MOOS processes to consume.

6.2.1 Step 1 - Reading Mail and Populating the Info Buffer

The first step of a helm iteration occurs outside the Iterate() loop. As depicted in Figure 5 on
page 26, a MOOS application will read its mail by executing its OnNewMail () function just prior to
executing its Iterate() loop if there is any mail in its in-box. The helm parses mail to maintain
its own information buffer which is also a mapping of variables to values. This is done primarily
for simplicity - to ensure that each behavior is acting on the same world state as represented by
the info buffer. Each behavior has a pointer to the buffer and is able to query the current value of
any variable in the buffer, or get a list of variable-value changes since the previous iteration.
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6.2.2 Step 2 - Evaluation of Mode Declarations

Once the information buffer is updated with all incoming mail, the helm evaluates any mode
declarations specified in the behavior file. Mode declarations are discussed in Section 6.4. In short,
a mode is represented by a string variable that is reset on each iteration based on the evaluation
of a set of logic expressions involving other variables in the buffer. The variable representing the
mode declaration is then available to the behavior on the current iteration when it, for example,
evaluates its condition parameters. A condition for behavior participating in the current iteration
could therefore read something like condition = (MODE==SURVEYING). The exact value of the variable
MODE is set during this step of the Iterate() loop.

6.2.3 Step 3 - Behavior Participation

In the third step much of the work of the helm is realized by giving each behavior a chance to
participate. Each behavior is queried sequentially - the helm contains no separate threads in this
regard. The order in which behaviors is queried does not affect the output. This step contains
two distinct parts for each behavior - (1) Determination of whether the behavior will participate,
and (2) production of output if it is indeed participating on this iteration. Each behavior may
produce two types of information as the Figure 12 indicates. The first is an objective function (or
“utility” function) in the form of an IvP function. The second kind of behavior output is a list of
variable-value pairs to be posted by the helm to the MOOSDB at the end of the Iterate() loop.
A behavior may produce both kinds of information, neither, or one or the other, on any given
iteration.

6.2.4 Step 4 - Behavior Reconciliation

In the fourth step depicted in Figure 12, the IvP functions are collected by the IvP solver to produce
a single decision over the helm’s decision space. Each function is an IvP function - an objective
function that maps each element of the helm’s decision space to a utility value. In this case the
functions are of a particular form - piecewise linearly defined. That is, each piece is an interval
of the decision space with an associated linear function. Each function also has an associated
weight and the solver performs multi-objective optimization over the weighted sum of functions (in
effect a single objective optimization at that point). The output is a single optimal point in the
decision space. For each decision variable the helm produces another variable-value pair, such as
DESIRED SPEED = 2.4 for publication to the MOOSDB.

6.2.5 Step 5 - Publishing the Results to the MOOSDB

In the last step, the helm simply publishes all variable-value pairs to the MOOSDB, some of which
were produced directly by the behaviors, and some of which were generated as output from the IvP
Solver. The helm employs the duplication filter described in Section 5.7, only on the variable-value
pairs generated directly from the behaviors, and not the variable-value pairs generated by the IvP
solver that represent a decision in the helm’s domain. For example, even if the decision about a
vehicle’s depth, represented by the variable DESIRED DEPTH produced by the helm were unchanged
for 5 minutes of operation, it would be published on each iteration of the helm. To do otherwise
could give the impression to consumers of the variable that the variable is “stale”, which could
trigger an unwanted override of the helm out of concern for safety.
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6.3 Mission Behavior Files

The helm is configured for a particular mission primarily through one or more mission behavior
files, typically with a *.bhv suffix. Behavior files have three types of entries, usually but not
necessarily kept in three distinct parts - (1) variable initializations, (2) behavior configurations,
and (3) hierarchical mode declarations. These three parts are discussed below. The example
alpha.bhv file in Listing 5 on page 39 did not contain hierarchical mode declarations, but does
contain examples of variable initializations and behavior configurations.

6.3.1 Variable Initialization Syntax

The syntax for variable initialization is fairly straight-forward:

initialize <variable> <value>

initialize <variable> <value>

Multiple initializations may be declared on a single line by separating each variable-value pair with
a comma. The keyword initialize is case insensitive. The <variable> is indeed case sensitive
since it will be published to the M00SDB and MOOS variables are case sensitive when registered for
by a client. The <value> may or may not be case sensitive depending on whether or not a client
registering for the variable regards the case. Considering again the helm Iterate() loop depicted
in Figure 12 on page 60, variable initializations are applied to the helm’s information buffer prior
to the very first helm iteration, but are posted to the MOOSDB at the end of the first helm iteration.

By default, an initialization will overwrite any prior value posted to the MOOSDB. There may
be situations, however, where the user’s desired effect is that the initialization only be applied if no
other value has yet been written to the given MOOS variable. The syntax in this case would be:

initialize_ <variable> = <value> // Deferring to prior posts if any

By using the “underscore” version of the initialize declaration, the helm will first register with
the MOOSDB for the given variable, wait an iteration until it has had chance to receive mail from
the MOOSDB on that variable, and only initialize the variable is nothing is known otherwise about
that variable. (Note to the very discerning reader: Such an initialization also includes both an
update to the helm’s information buffer and a post to the MOOSDB. Posts to the MOOSDB by
the helm, as part of a variable initialization, will indeed show up in the helm’s incoming mailbox
on the next iteration, but they are tagged in such a way as to be ignored by the helm. This is to
ensure that they do not “collide” with posts made by other processes.)

6.3.2 Behavior Configuration Syntax

The bulk of the helm configuration is done with individual behavior parameter blocks which have
the following form:

Behavior = <behavior-type>

{

<parameter> = <value>
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<parameter> = <value>

}

The first line is a declaration of the behavior type. The keyword Behavior is not case sensitive, but
the <behavior-type> is. This is followed by an open brace on a separate line. Each subsequent line
sets a particular parameter of the behavior to a given value. The behavior configuration concludes
with a close brace on a separate line. The issue of case sensitivity for the <parameter> and <value>
entries is a matter determined by the individual behavior implementation.

As a convention (not enforced in any way) general behavior parameters, defined at the IvP
Behavior superclass level, are grouped together and listed before parameters that apply to a spe-
cific behavior. For example, in the Alpha example in Listing 5 on page 39, the general behavior
parameters are listed on lines 8-12 and 22-25, but the parameters specific to the waypoint behavior,
speed, radius, and points, follow in a separate block. Generally it is not mandatory to provide
a parameter-value pair for each parameter defined for a behavior, given that meaningful defaults
are in place within the behavior implementation. Some parameters are indeed mandatory however.
Documentation for the individual behavior should be consulted. Multiple instances of a behavior
type are allowed, as in the Alpha example where there are two waypoint behaviors - one for travers-
ing a set of points, and one for returning to a vehicle recovery point. Each behavior should have
its own unique value provided in the name parameter.

6.3.3 Hierarchical Mode Declaration Syntax

Hierarchical Mode Declarations are covered in depth in Section 6.4, but the syntax is briefly dis-
cussed here. A behavior file contains a set of declaration blocks of the form:

Set <mode-variable-name> = <mode-value>
{

<mode-variable-name> = <parent-value>
<condition>

<condition>
} <else-value>

A tree will be formed where each node in the tree is described from the above type of declaration.
The keyword Set is case insensitive. The <mode-variable-name>, <parent-value> and <else-value>
are case sensitive. The <condition> entries are treated exactly as with the CONDITION parameter for
behaviors, see Section 6.5.1.

As indicated in Figure 12, the value of each mode variable is reset at the outset of the Iterate()
loop, after the information buffer is updated with incoming mail. A mode variable is set by
progressing through each declaration block, and determining whether the conditions are met. Thus
the ordering of the declaration blocks is significant - the specification of parent should be made
prior to that of a child. Examples are further discussion can be found below in Section 6.4.
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6.4 Hierarchical Mode Declarations

Hierarchical mode declarations (HMDs) are an optional feature of the IvP Helm for organizing the
behavior activations according to declared mission modes. Modes and sub-modes can be declared,
in line with a mission planner’s own concept of mission evolution, and behaviors can be associated
with the declared modes. In more complex missions, it can facilitate mission planning (in terms of
less time and better detection of human errors), and it can facilitate the understanding of exactly
what is happening in the helm - during the mission execution and in post-analysis.

6.4.1 Background

A trend of unmanned vehicle usage can be characterized as being increasingly less of the shorter,
scripted variety to be increasingly more of the longer, adaptive mission variety. A typical mission in
our own lab five years ago would contain a certain set of tasks, typically waypoints and ultimately
a rendezvous point for recovering the vehicle. Data acquired during deployment was off-loaded
and analyzed later in the laboratory. What has changed? The simultaneous maturation of acous-
tic communications, on-board sensor processing, and longer vehicle battery life has dramatically
changed the nature of mission configurations. The vehicle is expected to adapt to both the phenom-
ena it senses and processes on board, as well as adapt its operation given field-control commands
received via acoustic, radio or satellite communications. Multi-vehicle collaborative missions are
also increasingly viable due to lower vehicle costs and mature acomms capabilities. In such cases
a vehicle is not only adapting to sensed phenomena and field commands, but also to information
from collaborating vehicles.

Our missions have evolved from having a finite set of fixed tasks to be composed instead of a
set of modes, an initial mode when launched, an understanding of what brings us from one mode
to another, and what behaviors are in play in each mode. Modes may be entered and exited any
number of times, in exact sequences unknown at launch time, depending on what they sense and
how they are commanded in the field.

6.4.2 Behavior Configuration Without Hierarchical Mode Declarations

Behaviors can be configured for a mission without the use of hierarchical mode declarations -
support for HMDs is a relatively recent addition to the helm. HMDs are a tool for organizing
which behaviors are idle or participating in which circumstances. Consider the alpha example
mission in Section 4, and the behavior file in Listing 5. By examination of the behavior file, and
experimenting a bit with the viewer during simulation, the vehicle apparently is always in one of
three modes - (a) idle, (b) surveying the waypoints, or (c) returning to the launch point. This is
achieved by the condition parameters for the two behaviors. There are only two variables involved
in the behavior conditions, DEPLOY and RETURN. If restricted to Boolean values, the below table
confirms the observation that there are only three possible modes.
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’ DEPLOY ‘ RETURN H Mode

true true Returning
true false Surveying
false true Idle
false false Idle

Table 5: Possible modes implied by the condition parameters in the alpha mission in Listing 5.

There are a couple drawbacks with this however. First, the modes are to be inferred from
the behavior conditions and this is not trivial in missions with larger behavior files. Mapping the
behavior conditions to a mode is useful both in mission planning and mission monitoring. In the
alpha mission, in order to understand at any given moment what mode the vehicle is in, the two
variables need to be monitored, and the above table internalized. The second drawback is the
increased likelihood of error, in the form of unintentionally being in two modes at the same time, or
being in an undefined mode. For example, line 11 in Listing 5 really should read RETURN != true,
and not RETURN = false. Since there is no Boolean type for MOOS variables, this variable could be
set to "False" and the condition as it reads on line 11 in Listing 5 would not be satisfied, and the
vehicle would be in the idle state, despite the fact that DEPLOY may be set to true. These problems
are alleviated by the use of hierarchical mode declarations.

6.4.3 Syntax of Hierarchical Mode Declarations - The Bravo Mission

An example is provided showing of the use of hierarchical mode declarations by extending the Alpha
mission described in Section 4. This example mission is dubbed the “Bravo” mission in the directory
s2_bravo alongside the Alpha mission si_alpha in the MOOS-IvP distribution (Section 4.1). It is
also given fully in Listing 11 on the next page. The implicit modes of the Alpha mission, described
in Table 5, are explicitly declared in the Bravo behavior file to form the following hierarchy:

Undefined

MODE = “"

// Excerpt from the
// bravo.bhv file.

Set MODE
DEPLOY
} Inactive

Active {
true MODE = “Active”

o

MODE = *“Inactive”

Set MODE = Surveying {
MODE = Active
RETURN != true

} Returning

L3 _/ MODE = *“Active:Surveying” MODE = “Active:Returning”

Figure 13: Hierarchical modes for the Bravo mission: The vehicle will always be in one of the modes represented
by a leaf node. A behavior may be associated with any node in the tree. If a behavior is associated with an internal
node, it is also associated with all its children.
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The hierarchy in Figure 13 is formed by the mode declaration constructs on the left-hand side,
taken as an excerpt from the bravo.bhv file. After the mode declarations are read when the helm
is initially launched, the hierarchy remains static thereafter. The hierarchy is associated with a
particular MOOS variable, in this case the variable MODE. Although the hierarchy remains static,
the mode is re-evaluated at the outset of each helm iteration based on the conditions associated
with nodes in the hierarchy. The mode evaluation is represented as a string in the variable MODE.
As shown in Figure 13 the variable is the concatenation of the names of all the nodes. The mode
evaluation begins sequentially through each of the blocks. At the outset the value of the variable
MODE is reset to the empty string. After the first block in Figure 13 MODE will be set to either "Active"
or "Inactive". When the second block is evaluated, the condition "MODE=Active" is evaluate based
on how MODE was set in the first block. For this reason, mode declarations of children need to be
listed after the declarations of parents in the behavior file.

Once the mode is evaluated, at the outset of the helm iteration, it is available for use in the
conditions of the behaviors, as in lines 20 and 23 in Listing 11. Note the "==" relation in lines 18 and
36. This is a string-matching relation that matches when one side matches exactly one of the com-
ponents in the other side’s colon-separated list of strings. Thus "Active" == "Active:Returning",
and "Returning" == "Active:Returning". This is to allow a behavior to be easily associated with
an internal node regardless of its children. For example if a collision-avoidance behavior were to be
added to this mission, it could be associated with the "Active" mode rather than explicitly naming
all the sub-modes of the "Active" mode.

Listing 11: The Bravo Mission - Use of Hierarchical Mode Declarations.

0 initialize DEPLOY = false

1 initialize RETURN = false

2

3 // Declaration of Hierarchical Modes
4 set MODE = ACTIVE {

5 DEPLOY = true

6 } INACTIVE

7

8 set MODE = SURVEYING {

9 MODE = ACTIVE

10 RETURN != true

11} RETURNING

12

13 //

14 Behavior = BHV_Waypoint

15 {

16 name waypt_survey

17 pwt 100

18 condition = MODE == SURVEYING

19 endflag RETURN = true

20 perpetual = true

21

22 lead = 8

23 lead_damper = 1

24 speed = 2.0 // meters per second
25 radius = 4.0

26 nm_radius = 10.0

27 points = 60,-40:60,-160:150,-160:180,-100:150,-40
28 repeat = 1

29 }

30

31 //
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32 Behavior = BHV_Waypoint

33 {
34 name = waypt_return
35 pwt = 100

36 condition = MODE == RETURNING
37 perpetual = true

38 endflag = RETURN = false
39 endflag = DEPLOY = false
40

41 speed = 2.0

42 radius = 2.0

43 nm_radius = 8.0

44 point = 0,0

45 }

6.4.4 A More Complex Example of Hierarchical Mode Declarations

The Bravo example given above, while having the benefit of being a working example distributed
with the codebase, is not complex. In this section a modestly complex, although fictional, hierarchy
is provided to highlight some issues with the syntax. The hierarchy with the corresponding mode
declarations are shown in Figure 14. The declarations are given in the order of layers of the tree
ensuring that parents are declared prior to children. As with the Bravo example in Figure 13, the
nodes that represent realizable modes are depicted in the darker (green) color.

//7; Level 1 of the Mode T;;;\\
Set MODE = Alpha {

MISSION = SURVEYING

Undefined MODE = 7

}
Set MODE = Bravo {
MISSION = LOITERING

} Charlie

Charlie MODE=*Charlie”

MODE=*Alpha”

// Level 2 of the Mode Tree
Set MODE = Delta {

MODE = “Bravo”

MODE = Alpha
) :I:E = Archipelagos MODE="Alpha:Echo”
cho

Set MODE = Foxtrot {
MODE = Charlie

VIDEO = Streaming MODE=“Alpha:Delta”
} Golf

MODE=“Charlie:Foxtrot” MODE=“Charlie:Golf"

// Level 3 of the Mode Tree
Set Mode = Sierra {
MODE = Alpha:Echo

WATER_DEPTH = Shallow , :
} = MODE="Alpha:Echo:Sierra” MODE=“Charlie:Echo:Tango”

Set Mode = Tango {
MODE = Alpha:Echo

\WATER_DEP’I‘H = Deep
) 4

Figure 14: Example Hierarchical Mode Declaration: The hierarchy on the right is constructed from the set
of mode declarations on the the left (with fictional conditions). Darker nodes represent modes that are realizable
through some combination of conditions.

The "Alpha" mode for example is not realizable since it has the children "Delta" and "Echo", with
the latter being set as the <else-value> if the conditions of the former at not met. The "Bravo"
mode is realizable since it has no children. The "Echo" mode is realizable despite having children
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because the "Tango" mode is not the <else-value> of the "Sierra" mode declaration. For example,
if the following three conditions hold, (a) "MISSION=SURVEYING", (b) "SITE!=Archipelagos", and (c)
"WATER DEPTH=Medium", then the value of the variable MODE would be set to "Alpha:Echo". Finally,
note that the condition in the "Sierra" declaration, "MODE=Alpha:Echo", is specified fully, i.e.,
"MODE=Echo" would not achieve the desired result.

6.4.5 Monitoring the Mission Mode at Run Time

The mission mode can be monitored at run time in a couple ways. First, since the mode variable
is posted as a MOOS variable, any MOOS scope tool will work, e.g., uXMS, uMS, uHelmScope Using
uHelmScope, the mission variable can be monitored as part of the basic MOOSDB scoping capability
(see Section 11.2.2), but it is also displayed on it’s own, in the fourth line of the main output. For
example, see line 4 in Listing 28 on page 175. Unlike the other general MOOS scope tools, the
uHelmScope allows for stepping backwards through helm iterations to see when the mission mode
changed and perhaps what precipitated the change. See the section on stepping through saved
scope history in Section 11.3.

The uHelmScope tool also has a mode in which the entire mode hierarchy may be rendered -
solely to provide a visual confirmation that the hierarchy specified with the mode declarations in
the behavior file does in fact correspond to what the user intended. Currently there are no tools
to automatically render the mode hierarchy in a manner like the right hand side of Figure 14. The
uHelmScope output for the example in Figure 14 is shown in listing 12 below.

Listing 12: The mode hierarchy output from uHelmScope for the example in Figure 14.

ModeSet Hierarchy:

0

1

2  Alpha

3 Delta

4 Echo

5 Sierra
6 Tango
7 Bravo

8 Charlie

9 Foxtrot
10 Golf

12 CURENT MODE(S): Charlie:Foxtrot

14 Hit ’r’ to resume outputs, or SPACEBAR for a single update

More on this feature of the uHelmScope can be found in Section 11. It’s worth noting that poking
the value of a mode variable will have no effect on the helm operation. The mission mode cannot
be commanded directly. The mode variable is reset at the outset of the helm iteration, and the
helm doesn’t even register for mail on mode variables.

6.5 Behavior Participation in the IvP Helm

The primary work of the helm comes when the behaviors participate and do their thing, at each
round of the helm Iterate() loop. As depicted in Figure 12 on page 60, once the mode has been
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re-evaluated taking into consideration newly received mail, it is time for the behaviors (well, some
at least) to step up and do their thing.
6.5.1 Behavior Run Conditions

On any single iteration a behavior may participate by generating an objective function to influence
the helm’s output over its decision space. Not all behaviors participate in this regard, and the
primary criteria for participation is whether or not it has met each of its “run conditions”. These
are the conditions laid out in the behavior file of the form:

condition = <logic-expression>

The <logic-expression> syntax is described in Appendix A. Conditions are built from simple rela-
tional expressions, the comparison of MOOS variables to specified literal values, or the comparison
of MOOS variables to one another. Conditions may also involve Boolean logic combinations of
relation expressions. A behavior may base its conditions on any MOOS variable such as:

condition = (DEPLOY=true) and (STATION_KEEP != true)

A run condition may also be expressed in terms of a helm mode, as described in the next Section
6.5.2 such as:

condition = (MODE == LOITERING)

All MOOS variables involved in run condition expressions are automatically subscribed for by the
helm to the MOOSDB.
6.5.2 Behavior Run Conditions and Mode Declarations

The use of hierarchical mode declarations potentially simplify the expressions used as run condi-
tions. The conditions in practice could be limited to:

condition <mode-variable> = <mode-value>, or
condition = <mode-variable> == <mode-value>.

Conditions were used in this way with the Bravo mission in Listing 11 on page 66, as an alternative
to their usage in the Alpha mission example in Listing 5 on page 39.

Note the use of the double-equals relation above. This relation is used for matching against the
strings used to represent the hierarchical mode. The two strings match if the ordered components
of one side are a subset of the ordered components of the other. Components are colon-separated.
For example, using the illustrative hierarchy from Figure 14:

"Alpha:Echo:Sierra" == "Sierra"
"Alpha:Echo:Sierra" == "Echo:Sierra"
"Alpha:Echo:Sierra" == "Alpha"
"Sierra" == "Alpha:Echo:Sierra"
"Charlie:Foxtrot" == "Charlie:Foxtrot"
"Alpha:Echo:Sierra" != "Alpha:Sierra"
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6.5.3 Behavior Run States

On any given helm iteration a behavior may be in one of four states depicted in Figure 15:

| (s (| [ s |

Figure 15: Behavior States: A behavior may be in one of these four states at any given iteration of helm Iterate()
loop. The state is determined by examination of MOOS variables stored locally in the helm’s information buffer.

e Idle: A behavior is idle if it is not complete and it has not met its run conditions as described
above in Section 6.5.1. The helm will invoke an idle behavior’s onIdleState() function.

e Running: A behavior is running if it has met its run conditions and it is not complete. The
helm will invoke a running behavior’s onRunState () function thereby giving the behavior an
opportunity to contribute an objective function.

e Active: A behavior is active if it is running and it did indeed produce an objective function
when prompted. There are a number of reasons why a running behavior may not be active.
For example, a collision avoidance behavior where the object of the behavior is sufficiently
far away.

e Complete: A behavior is complete when the behavior itself determines it to be complete. It is
up to the behavior author to implement this, and some behaviors may never complete. The
function setComplete() is defined generally at the behavior superclass level, for calling by a
behavior author. This provides some some standard steps to be taken upon completion, such
as posting of endflags, described below in Section 6.5.4. Once a behavior is in the complete
state, it remains in that state permanently. All behaviors have a DURATION parameter defined
to allow it to be configured to time-out if desired. When a time-out occurs the behavior state
will be set to complete.

6.5.4 Behavior Flags and Behavior Messages

Behaviors may post some number of messages, i.e., variable-value pairs, on any given iteration (see
Figure 12, p. 60). These message can be critical for coordinating behaviors with each other and
to other MOOS processes. The can also be invaluable for monitoring and debugging behaviors
configured for particular missions. To be more accurate, behaviors don’t post messages to the
MOOSDB, they request the helm to post messages on its behalf. The helm collects these requests and
publishes them to the MOOSDB at the end of the Iterate() loop. It also filters them for successive
duplicates as discussed in Section 5.7.

There is a standard method, configurable in the behavior file, for posting messages based on
the run state of the behavior. These are referred to as behavior flags, and there are five types,
(1) endflag, (2) idleflag, (3) runflag, (4) activeflag, (5) inactiveflag. The variable-value pairs
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representing each flag are set in the behavior file for the corresponding behavior. See line 12 in 5
on page 39 for example.

e endflag: An endflag is posted once when or if the behavior enters the complete state. The
variable-value pair representing the endflag is given in the endflag parameter in the behavior
file. Multiple endflags may be configured for a behavior.

e idleflag: An idleflag is posted on each iteration of the helm when the behavior is determined
to be in the idle state. The variable-value pair representing the idleflag is given in the
idleflag parameter in the behavior file. Multiple idleflags may be configured for a behavior.

e runflag: An runflag is posted on each iteration of the helm when the behavior is determined
to be in the running state, regardless of whether it is further determined to be active or not.
A runflag is posted exactly when an idleflag is not. The variable-value pair representing
the runflag is given in the runflag parameter in the behavior file. Multiple runflags may be
configured for a behavior.

e activeflag: An activeflag is posted on each iteration of the helm when the behavior is
determined to be in the active state. The variable-value pair representing the activeflag is
given in the activeflag parameter in the behavior file. Multiple activeflags may be configured
for a behavior.

e inactiveflag: An inactiveflag is posted on each iteration of the helm when the behavior is
determined to be not in the active state. The variable-value pair representing the inactiveflag
is given in the inactiveflag parameter in the behavior file. Multiple inactiveflags may be
configured for a behavior.

A runflag is meant to “complement” an idleflag, by posting exactly when the other one does not.
Similarly with the inactiveflag and activeflag. The situation is shown in Figure 16:

I
idleflag | runflag

I

| :

I

| 1

\ 1
i
1

inactiveflag | activeflag

]

Figure 16: Behavior Flags: The four behavior flags idleflag, runflag, activeflag, and inactiveflag are posted
depending on the behavior state and can be considered complementary in the manner indicated.

Behavior authors may implement their behaviors to post other messages as they see fit. For example
the waypoint behavior used in the Alpha example in Section 4 also published the variable WPT_STAT
with a status message similar to "vname=alpha,index=0,dist=124,eta=62" indicating the name of
the vehicle, the index of the next point in the list of waypoints, the distance to that waypoint, and
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the estimated time of arrival, in seconds. (You might want to re-run the Alpha mission with uxMs
scoping on this variable to watch it change as the mission unfolds.)

6.5.5 Monitoring Behavior Run States and Messages During Mission Execution

The run states for each behavior, are wrapped up on each iteration by the helm into a single string
and published in the variable IVPHELM _SUMMARY. This variable is subscribed for by the uHelmScope
tool and behavior states are parsed from this variable and summarized in the main output, as in
lines 12-17 in Listing 28 on page 175. These lines are provided in the below excerpt:

12 Behaviors Active: —-————————- (1)

13 waypt_survey (13.0) (pwt=100.00) (pcs=1227) (cpu=0.01) (upd=0/0)
14 Behaviors Running: --------- (0)

15 Behaviors Idle: —————-—-——---—- 1)

16 waypt_return (22.8)

17 Behaviors Completed: ------- (0)

Behaviors are grouped into the four possible states, with a summary line for each state, e.g., lines
12, 14, 15, 17, containing the number of behaviors in that state in parentheses at the end of the line.
Each behavior configured for the helm shows up on a dedicated line in the appropriate group, e.g.,
lines 13 and 16. In these lines immediately following the behavior name, the number of seconds is
displayed in parentheses indicating how long the behavior has been in that state.

The uHelmScope tool can also be used to monitor the messages generated by each behavior on
each iteration. The helm, in addition to posting all the variable-value pairs to the MOOSDB at the
end of the Iterate() loop, also builds a summary of all such posts into a single string and publishes
it as IVPHELM_POSTINGS. This variable is subscribed for and parsed by uHelmScope to generate the
“Behavior-Posts” section of the uHelmScope output. An example can be seen in lines 28-39 in Listing
28, and this part of the uHelmScope output is described in Section 11.2.3.

6.6 Behavior Reconciliation in the IvP Helm - Multi-Objective Optimization
6.6.1 IvP Functions

IvP functions are produced by behaviors to influence the decision produced by the helm on the
current iteration (see Figure 12, p. 60). The decision is typically comprised of the desired heading,
speed, and depth but the helm decision space could be comprised of any arbitrary configuration
(see section 5.4, p. 49). Some points about IvP functions:

e [vP functions are piecewise linearly defined. Each piece is defined by an interval over some
subset of the decision space, and there is a linear function associated with each piece (see
Figure 18).

e IvP functions are an approximation of an underlying function. The linear function for a single
piece is the best linear approximation of the underlying function for the portion of the domain
covered by that piece.
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e IvP domains are discrete with an upper and lower bound for each variable, so an IvP function
may achieve zero-error in approximating an underlying function by associating a piece with
each point in the domain. Behaviors seldom need to do so in practice however.

e The Ivp function construct and IvP solver are generalizable to N dimensions.

e The pieces in IvP functions need not be uniform size or shape. More pieces can be dedicated
to parts of the domain that are harder to approximate with linear functions.

e IvP functions need only be defined over a subset of the domain. Behaviors are not affected if
the helm is configured for additional variables that a behavior may not care about. Behaviors
that produce functions solely over vehicle depth are perfectly ok.

How are IvP functions built? The IvP Build Toolbox is a set of tools for creating IvP functions
based on any underlying function defined over an IvP Domain. Many, if not all of the behaviors in
this document make use of this toolbox, and authors of new behaviors have this at their disposal. A
primary component of writing a new behavior is the development of the “underlying function”, the
function approximated by an IvP function with the help of the toolbox. The underlying function
represents the relationship between a candidate helm decision and the expected utility with respect
to the behavior’s objectives. The IvP Toolbox is not covered in detail in this document, but an
overview is given below.

6.6.2 The IvP Build Toolbox

The IvP Toolbox is a set of tools (a C++ library) for building IvP functions. It is typically utilized
by behavior authors in a sequence of library calls within a behavior’s (C++) implementation. There
are two sets of tools - the Reflector tools for building IvP functions in N dimensions, and the ZAIC
tools for building IvP functions in one dimension as a special case. The Reflector tools work by
making available a function to be approximated by an IvP function. The tools simply need this
function for sampling. Consider the Gaussian function rendered below in Figure 17:
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xcent = 50
ycent = =150
sigma = 32.4
range = 150
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Figure 17: A rendering of the function f(z,y) = Ae 202 where A = range = 150, 0 = sigma = 32.4,
xo = xcent = 50, yo = ycent = —150. The domain here for x and y ranges from —250 to 250.

The ’x’ and ’y’ variables, each with a range of [—250, 250], are discrete, taking on integer values.
The domain therefore contains 5012 = 251, 001 points, or possible decisions. The IvP Build Toolbox
can generate an IvP function approximating this function over this domain by using a uniform piece
size, as rendered in Figure 18(a) and 18(b). The difference in these two figures is only the size of
the piece. More pieces (Figure 18(a)) results in a more accurate approximation of the underlying
function, but takes longer to generate and creates further work for the IvP solver when the functions
are combined. IvP functions need not use uniformly sized pieces.
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(b) 289 (17xi7) uniform pieces

(c) Directed Refinement - 732 pieces

(d) Smart Refinement - 225 pieces

Figure 18: A rendering of four different IvP functions approximating the same underlying function:
The function in (a) uses a uniform distribution of 7056 pieces. The function in (b) uses a uniform distribution of
1024 pieces. The function in (c) was created by first building a uniform distribution of 49 pieces and then focusing
the refinement on a sub-domain of the function. This is called directed-refinement in the IvP Build toolbox. The
function in (d) was created by first building a uniform function of 25 pieces and repeatedly refining the function
based on which pieces were noted to have a poor fit to the underlying function. This is termed smart-refinement in
the IvP Build toolbox.

By using the directed refinement option in the IvP Build Toolbox, an initially uniform IvP function
can be further refined with more pieces over a sub-domain directed by the caller, with smaller
uniform pieces of the caller’s choosing. This is rendered in Figure 18(c). Using this tool requires
the caller to have some idea where, in the sub-domain, further refinement is needed or desired.
Often a behavior author indeed has this insight. For example, if one of the domain variables is
vehicle heading, it may be good to have a fine refinement in the neighborhood of heading values
close to the vehicle’s current heading.

In other situations, insight into where further refinement is needed may not be available to the
caller. In these cases, using the smart refinement option of the IvP Build Toolbox, an initially
uniform IvP function may be further refined by asking the toolbox to automatically “grade” the
pieces as they are being created. The grading is in terms of how accurate the linear fit is between the
piece’s linear function and the underlying function over the sub-domain for that piece. A priority
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queue is maintained based on the grades, and pieces where poor fits are noted, are automatically
refined further, up to a maximum piece limit chosen by the caller. This is rendered in Figure 18(d).

The Reflector tools work similarly in N dimensions and on multi-modal functions. The only
requirement for using the Reflector tool is to provide it with access to the underlying function.
Since the tool repetitively samples this function, a central challenge to the user of the toolbox is
to develop a fast implementation of the function. In terms of the time consumed in generating IvP
functions with the Reflector tool, the sampling of the underlying function is typically the long pole
in the tent.

6.6.3 The IvP Solver and Behavior Priority Weights

The IvP Solver collects a set of weighted IvP functions produced by each of the behaviors and
finds a point in the decision space that optimizes the weighted combination. If each IvP objective
function is represented by f;(7'), and the weight of each function is given by w;, the solution to a
problem with k functions is given by:

k-1
f* = argmax Ew,f,(x)
X =0

The algorithm is described in detail in [3], but is summarized in the following few points.

e The search tree: The structure of the search algorithm is branch-and-bound. The search tree
is comprised of an IvP function at each layer, and the nodes at each layer are comprised of the
individual pieces from the function at that layer. A leaf node represents a single piece from
each function. A node in the tree is realizable if the piece from that node and its ancestors
intersect, i.e., share common points in the decision space.

e Global optimality: Each point in the decision space is in exactly one piece in each IvP function
and is thus in exactly one leaf node of the search tree. If the search tree is expanded fully, or
pruned properly (only when the pruned out sub-tree does not contain the optimal solution),
then the search is guaranteed to produce the globally optimal solution. The search algorithm
employed by the IvP solver does indeed start with a fully expanded tree, and utilizes proper
pruning to guarantee global optimality. The algorithm does allow for a parameter for guar-
anteed limited back-off from the global optimality - a quicker solution with a guarantee of
being within a fixed percent of global optima. This option is not exposed to the IvP Helm
which always finds the global optimum.

o Initial solution: A key factor of an effective branch-and-bound algorithm is seeding the search
with a decent initial solution. In the IvP Helm, the initial solution used is the solution
(typically heading, speed, depth) generated on the previous helm iteration. Upon casual
observation this appears to provide a speed-up by about a factor of two.

In cases where there is a “tie” between optimal decisions, the solution generated by the solver is
non-deterministic. This is mitigated somewhat by the fact that the solution is seeded with the
output of the previous iteration as discussed above.
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6.6.4 Monitoring the IvP Solver During Mission Execution

The performance of the solver can be monitored with the uHelmScope tool described in Section 11.
The output shown below in Listing 13 is an excerpt of the full output shown in Listing 28 on page
175. On line 5, the total time needed to solve the multi-objective optimization problem is given in
seconds, and the max time need for all recorded loops is given in parentheses. It is zero here since
there is only one objective function in this example. On line 6 is the total time for creating the
IvP functions in all behaviors, with the max across all iterations in parentheses. On line 7 is the
total loop time - the sum of the previous two lines. Active behaviors display useful information
regarding the IvP solver. For example, on line 13, the Survey waypoint behavior had a priority
weight of 100 and generated 1,227 pieces, taking 0.01 seconds of CPU time to create.

Listing 13 - Fxample uHelmScope output containing information about the IvP solver.

1 ============== uHelmScope Report ============== ENGAGED (17)

2 Helm Iteration: 66 (hz=0.38) (5) (hz=0.35)(66) (hz=0.56) (max)
3 IvP functions: 1

4 Mode (s) : Surveying

5 SolveTime: 0.00 (max=0.00)

6 CreateTime: 0.02 (max=0.02)

7 LoopTime: 0.02 (max=0.02)

8 Halted: false (0 warnings)

9 Helm Decision: [speed,0,4,21] [course,0,359,360]
10 speed = 3.00
11 course = 177.00

12 Behaviors Active: ---------- (D)

13 waypt_survey (13.0) (pwt=100.00) (pcs=1227) (cpu=0.01) (upd=0/0)
14 Behaviors Running: --------- 0)

15 Behaviors Idle: —------------ 1)

16 waypt_return (22.8)

17 Behaviors Completed: ------- 0)

18

The solver can be additionally monitored and analyzed through the two MOQOS variables LO0OP_CPU
and CREATE_CPU published on each helm iteration. The former indicates the system wall time for
building each IvP function and solving the multi-objective optimization problem, and the latter
indicates just the time to create the IvP functions.
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7 Properties of Helm Behaviors

The objective of this section is to describe properties common to all IvP Helm behaviors, describe
how to overload standard functions for 3rd party behaviors, and to provide a detailed simple
example of a behavior. It builds on the discussion from Chapter 6. The focus in this section is an
expansion of detail of Step 3 in Figure 12 on page 60.

7.1 Brief Overview

Behaviors are implemented as C++ classes with the helm having one or more instances at runtime,
each with a unique descriptor. The properties and implemented functions of a particular behavior
are partly derived from the IvPBehavior superclass, shown in Figure 19. The is-a relationship of a
derived class provides a form of code re-use as well as a common interface for constructing mission
files with behaviors.

[ IvPBehavior ]

(3"1 Party Extensions)

e

__________________________________

Figure 19: Behavior inheritance: Behaviors are derived from the IvPBehavior superclass. The native behaviors
are the behaviors distributed with the helm. New behaviors also need to be subclass of the IvPBehavior class to work
with the helm. Certain virtual functions invoked by the helm may be optionally but typically overloaded in all new
behaviors. Other private functions may be invoked within a behavior function as a way of facilitating common tasks
involved in implementing a behavior.

The IvPBehavior class provides five virtual functions which are typically overloaded in a particular
behavior implementation:

e The setParam() function: parameter-value pairs are handled to configure a behavior’s unique
properties distinct from its superclass.

e The onRunState() function: the meat of a behavior implementation, performed when the
behavior has met its conditions for running, with the output being an objective function and
a possibly empty set of variable-value pairs for posting to the MOOSDB.

e The onIdleState() function: what the behavior does when it has not met its run conditions.
It may involve updating internal state history, generation of variable-value pairs for posting
to the MOOSDB, or absolutely nothing at all.
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e The onIdleToRunState() function: invoked once by the helm upon transitioning from the
idle to running state (compared to the onRunState() function which is invoked on each helm
iteration where the behavior has met its conditions).

e The onRunToIdleState() function: invoked once by the helm upon transitioning from the
running to idle state (compared to the onIdleState() function which is invoked on each helm
iteration where the behavior has not met its conditions).

This section discusses the properties of the IvPBehavior superclass that an author of a third-
party behavior needs to be aware of in implementing new behaviors. It is also relevant material for
users of the native behaviors as it details general properties.

7.2 Parameters Common to All IvP Behaviors

A behavior has a standard set of parameters defined at the IvPBehavior level as well as unique
parameters defined at the subclass level. By configuring a behavior during mission planning, the
setting of parameters is the primary venue for affecting the overall autonomy behavior in a vehicle.
Parameters are set in the behavior file, but can also be dynamically altered once the mission has
commenced. A parameter is set with a single line of the form:

parameter = value

The left-hand side, the parameter component, is case insensitive, while the value component is
typically case sensitive. This was discussed in depth in Section 6.3. In this section, the parameters
defined at the superclass level and available to all behaviors are exhaustively listed and discussed.
Each behavior typically augments these parameters with new ones unique to the behavior, and in
the next section the issue of implementing new parameters by overloading the setParam() function
is addressed.

7.2.1 A Summary of the Full Set of General Behavior Parameters

The following parameters are defined for all behaviors at the superclass level. They are listed here
for reference - certain related aspects are discussed in further detail in other sections.

NAME: The name of the behavior - should be unique between all behaviors. Duplicates may be
confusing, but should not cause helm errors. Logging and output sent to the helm console during
operation will organize information by the behavior name.

PRIORITY: The priority weight of the produced objective function. The default value is 100. A
behavior may also be implemented to determine its own priority weight depending on information
about the world.

DURATION: The time in seconds that the behavior will remain running before declaring completion.
If no duration value is provided, the behavior will never time-out. The clock starts ticking once
the behavior satisfies its run conditions (becoming non-idle) the first time. Should the behavior
switch between running and idle states, the clock keeps ticking even during the idle periods. See
Section 7.2.3 for more detail.
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DURATION_STATUS: If the DURATION parameter is set, the remaining duration time, in seconds, can
be posted by naming a DURATION_STATUS variable. This variable will be update/posted only when
the behavior is in the running state. See Section 7.2.3 for more detail.

DURATION_RESET: This parameter takes a variable-pair such as MY _RESET=true. If the DURATION
parameter is set, the duration clock is reset when the variable is posted to the MOOSDB with
the specified value. Each time such a post is noted, the duration clock is reset. See Section 7.2.3
for more detail.

POST_MAPPING: This parameter takes a comma-separated pair such as WPT_STAT, WAYPT_STATUS
where the left-hand value is a variable normally posted by the behavior, and the right-hand
value is an alternative variable name to be used. There is no error-checking to ensure that the
left-hand value names a variable actually posted by the behavior. Transitive relationships are
not respected. For example, if the two re-mappings are declared, F00,BAR, and BAR,CAR, FOO will
be posted as BAR, not CAR. To disable the normal posting of a variable FOO, use POST MAPPING =
FOO,SILENT.

DURATION_IDLE DECAY: If this parameter is false the duration clock is paused when the vehicle is
in the “idle” state. The default value is true. See Section 7.2.3 for more detail.

CONDITION: This parameter specifies a condition that must be met for the behavior to be active.
Conditions are checked for each behavior at the beginning of each control loop iteration. Con-
ditions are based on current MOOS variables, such as STATE = normal or ((K < 4). More than
one condition may be provided, as a convenience, treated collectively as a single conjunctive
condition. The helm automatically subscribes for any condition variables. See Section 6.5.1 for
more detail on run conditions.

RUNFLAG: This parameter specifies a variable and a value to be posted when the behavior has met all
its conditions for being in the running state. It is a equal-separated pair such as TRANSITING=true.
More then one flag may be provided. These can be used to satisfy or block the conditions of
other behaviors. See Section 6.5.4 on page 70 for more detail on posting flags to the MOOSDB
from the helm.

IDLEFLAG: This parameter specifies a variable and a value to be posted when the behavior is in
the idle state. See the Section 6.5.3 for more on run states. It is an equal-separated pair such
as WAITING=true. More then one flag may be provided. These can be used to satisfy or block
the conditions of other behaviors. See Section 6.5.4 on page 70 for more detail on posting flags
to the MOOSDB from the helm.
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ACTIVEF1AG: This parameter specifies a variable and a value to be posted when the behavior is in
the active state. See the Section 6.5.3 for more on run states. It is an equal-separated pair such
as TRANSITING=true. More then one flag may be provided. These can be used to satisfy or block
the conditions of other behaviors. See Section 6.5.4 on page 70 for more detail on posting flags
to the MOOSDB from the helm.

INACTIVEF1AG: This parameter specifies a variable and a value to be posted when the behavior is
not in the active state. See the Section 6.5.3 for more on run states. It is a equal-separated
pair such as OUT_OF RANGE=true. More then one flag may be provided. These can be used to
satisfy or block the conditions of other behaviors. See Section 6.5.4 on page 70 for more detail
on posting flags to the MOOSDB from the helm.

ENDFLAG: This parameter specifies a variable and a value to be posted when the behavior has set
the completed state variable to be true. The circumstances causing completion are unique to
the individual behavior. However, if the behavior has a DURATION specified, the completed flag
is set to true when the duration is exceeded. The value of this parameter is a equal-separated
pair such as ARRIVED_HOME=true. Once the completed flag is set to true for a behavior, it remains
inactive thereafter, regardless of future events, barring a complete helm restart. See Section
6.5.4 on page 70 for more detail on posting flags to the MOOSDB from the helm.

UPDATES: This parameter specifies a variable from which updates to behavior configuration pa-
rameters are read from after the behavior has been initially instantiated and configured at the
helm startup time. Any parameter and value pair that would have been legal at startup time
is legal at runtime. The syntax for this string is a #-separated list of parameter-value pairs:
"param=value # param=value # ... # param=value". This is one of the primary hooks to the
helm for mission control - the other being the behavior conditions described above. See Section
7.2.2 for more detail.

NOSTARVE: The NOSTARVE parameter allows a behavior to assert a maximum staleness for one or
more MOOS variables, i.e., the time since the variable was last updated. The syntax for this
parameter is a comma-separated pair "variable, ..., variable, value", where last component
in the list is the time value given in seconds. See Section 7.2.5 on page 84 for more detail.

PERPETUAL: Setting the perpetual parameter to true allows the behavior to continue to run even
after it has completed and posted its end flags. The parameter value is not case sensitive and
the only two legal values are true and false. See Section 7.2.4 for more detail.

TEMPLATING: The templating parameter may be used to turn a behavior specification into a tem-
plate for spawning new behaviors dynamically after the helm has been launched. Instantiation
requests are received via the updates parameter described in Section 7.7.
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7.2.2 Altering Behavior Parameters Dynamically with the UPDATES Parameter

The parameters of a behavior can be made to allow dynamic modifications - after the helm has been
launched and executing the initial mission in the behavior file. The modifications come in a single
MOOS variable specified by the parameter UPDATES. For example, consider the simple waypoint
behavior configuration below in Listing 14. The return point is the (0,0) point in local coordinates,
and return speed is 2.0 meters/second. When the conditions are met, this is what will be executed.

Listing 14 - An example behavior configuration using the UPDATES parameter.

0 Behavior = BHV_Waypoint

1 {

2 name = WAYPT_RETURN
3 priority = 100

4 speed = 2.0

5 radius = 8.0

6 points = 0,0

7 UPDATES = RETURN_UPDATES
8 condition = RETURN = true
9 condition = DEPLOY = true
10 2}

If, during the course of events, a different return point or speed is desired, this behavior can be
altered dynamically by writing to the variable specified by the UPDATES parameter, in this case the
variable RETURN_UPDATES (line 7 in Listing 14). The syntax for this variable is of the form:

parameter = value # parameter = value # ... # parameter = value

White space is ignored. The '#’ character is treated as special for parsing the line into separate
parameter-value pairs. It cannot be part of a parameter component or value component. For
example, the return point and speed for this behavior could be altered by any other MOOS process
that writes to the MOOS variable:

RETURN_UPDATES = ¢ ‘points = (50,50) # speed = 1.5’

FEach parameter-value pair is passed to the same parameter setting routines used by the behavior
on initialization. The only difference is that an erroneous parameter-value pair will simply be
ignored as opposed to halting the helm as done on startup. If a faulty parameter-value pair is
encountered, a warning will be written to the variable BHV_WARNING. For example:

BHV_WARNING = "Faulty update for behavior: WAYPT_RETURN. Bad parameter(s): speed."

Note that a check for parameter updates is made at the outset of helm iteration loop for a behavior
with the call checkUpdates(). Any updates received by the helm on the current iteration will be
applied prior to behavior execution and in effect for the current iteration.

7.2.3 Limiting Behavior Duration with the DURATION Parameter

The duration parameter specifies a time period in seconds before a behavior times out and perma-
nently enters the completed state. If left unspecified, there is no time limit to the behavior. By
default, the duration clock begins ticking as soon as the helm engages. The duration clock remains
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ticking when or if the behavior subsequently enters the idle state. It even remains ticking if the
helm temporarily disengages. When a timeout occurs, end flags are posted. The behavior can be
configured to post the time remaining before a timeout with the duration_status parameter. The
forms for each are:

duration = value (positive numerical)
duration_status value (variable name)

Note that the duration status variable will only be published/updated when the behavior is in the
running state. The duration status is rounded to the nearest integer until less than ten seconds
remain, after which the time is posted out to two decimal places. The behavior can be configured
to have the duration clock pause when it is in the idle state with the following:

duration_idle_decay = false // The default is true

Configured in the above manner, a behavior’s duration clock will remain paused until it’s conditions
are met. The behavior may also be configured to allow for the duration clock to be reset upon the
writing of a MOOS variable with a particular value. For example:

duration_reset = BRAVO_TIMER_RESET=true

The behavior checks for and notes that the variable-value pair holds true and the duration clock is
then reset to the original duration value. The behavior also marks the time at which the variable-
value pair was noted to have held true. Thus there is no need to “un-set” the variable-value pair,
e.g., setting BRAVO_TIMER RESET=false, to allow the duration clock to resume its count-down.

7.2.4 The PERPETUAL Parameter

When a behavior enters the completed state, it by default remains in that state with no chance to
change. When the perpetual parameter is set to true, a behavior that is declared to be complete
does not actually enter the complete state but performs all the other activity normally associated
with completion, such as the posting of end flags. See Section 6.5.4 for more detail on posting
flags to the MOOSDB from the helm. The default value for perpetual is false. The form for this
parameter is:

perpetual = value

The value component is case insensitive, and the only legal values are either true or false. A
behavior using the duration parameter with perpetual set to true will post its end flags upon time
out, but will reset its clock and begin the count-down once more the next time its run conditions
are met, i.e., enters the running state. Typically when a behavior is used in this way, it also posts
an endflag that would put itself in the idle state, waiting for an external event.
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7.2.5 Detection of Stale Variables with the NOSTARVE Parameter

A behavior utilizing a variable generated by a MOOS process outside the helm, may require the
variable to be sufficiently up-to-date. The staleness of a variable is the time since it was last written
to by any process. The NOSTARVE parameter allows the mission writer to set a staleness threshold.
The form for this parameters is:

nostarve = variable_1, ..., variable_n, duration

The value of this parameter is a comma-separated list such as "NAV_X, NAV_Y, 5.0". The variable
components name MOOS variables and the duration component, the last entry in the list, represents
the tolerated staleness in seconds. If staleness is detected, a behavior failure condition is triggered
which will trigger the helm to post all-stop values and relinquish to manual control.

7.3 Overloading the setParam() Function in New Behaviors

The setParam() function is a virtual function defined in the IvPBehavior class, with parameters
implemented in the superclass (Section 7.2) handled in the superclass version of this function:

bool IvPBehavior::setParam(string parameter, string value);

The setParam() function should return true if the parameter is recognized and the value is in an
acceptable form. In the rare case that a new behavior has no additional parameters, leaving this
function undefined in the subclass is appropriate. The example below in Listing 15 gives an example
for a fictional behavior BHV_YourBehavior having a single parameter period.

Listing 15 - An example setParam() implementation for fictional BHV YourBehavior.

0 bool BHV_YourBehavior::setParam(string param, string value)
1 {

2 if (param == "period") {

3 double time_value = atof(value.c_str());

4 if ((time_value < 0) || (!isNumber(value)))
5 return(false);

6 m_period = time_value;

7 return(true);

8 }

9 return(false);

10 %

Since the period parameter refers to a time period, a check is made on line 4 that the value
component indeed is a positive number. (The atof () function on line 6, which converts an ASCII
string to a floating point value, returns zero when passed a non-numerical string, therefore the
isNumber () function is also used to ensure the string represented by value represents a numerical
value.) A behavior implementation of this function without sufficient syntax or semantic checking
simply runs the risk that faulty parameters are not detected at the time of helm launch, or during
dynamic updates. Solid checking in this function will reduce debugging headaches down the road.
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7.4 Behavior Functions Invoked by the Helm

The IvPBehavior superclass implements a number of functions invoked by the helm on each it-
eration. Two of these functions are overloadable as described previously - the onRunState() and
onIdleState() functions. The basic flow of calls to a behavior from the helm are shown in Figure 20.
These are discussed in more detail later in the section, but the idea is to execute certain behavior
functions based on the activity state, which may be one of the four states depicted.

t
e :& postFlags (endflags) J
faléa * poﬁtﬁ‘lags(inactiveflags)]
b postFlags(idleflags) ] E postFlags(runflags)

b postFlags(inactiveflags) ]

IvP Function
produced

Active state

i postFlags(inactiveflags) J b postFlags(activeflags) ]

- Immutable
Key to Helm-Invoked
Functions - Overloaded

:] Arguments from mission configuration

Figure 20: Behavior function-calls by the helm: The helm invokes a sequence of functions on each behavior
on each iteration of the helm. The sequence of calls is dependent on what the behavior returns, and reflects the
behaviors activity state. Certain functions are immutable and can not be overloaded by a behavior author. Two
key functions, onRunState() and onIdleState() can be indeed overloaded as the usual hook for an author to
provide the implementation of a behavior. The postFlags function is also immutable, but the parameters (flags)
are provided in the helm configuration (*.bhv) file.

No function
produced

An idle behavior is one that has not met its conditions for running. A completed behavior is
one that has reached its objectives or exceeded its duration. A rumning behavior is one that has
not yet completed, has met its run conditions, but may still opt not to produce any output. An
active behavior is one that is running and is producing output in the form of an objective function.

The types of functions defined at the superclass level fall into one of the three categories below,
only the first two of which are shown in Figure 20:
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e Helm-invoked immutable functions - functions invoked by the helm on each iteration that the
author of a new behavior may not re-implement.

e Helm-invoked overloadable functions - functions invoked by the helm that an author of a new
behavior typically re-implements of overloads.

e User-invoked functions - functions invoked within a behavior implementation.

The user-invoked functions are utilities for common operations typically invoked within the
implementation of the onRunState() and onIdleState() functions written by the behavior author.

7.4.1 Helm-Invoked Immutable Functions

These functions, implemented in the IvPBehavior superclass, are called by the helm but are not
defined as virtual functions which means that attempts to overload them in a new behavior imple-
mentation will be ignored. See Figure 20 regarding the sequence of these function calls.

void checkUpdates(): This function is called first on each iteration to handle requested dynamic
changes in the behavior configuration. This needs to be the very first function applied to a
behavior on the helm iteration so any requested changes to the behavior parameters may be
applied on the present iteration. See Section 7.2.2 for more on dynamic behavior configuration
with the UPDATES parameter.

bool isComplete(): This function simply returns a Boolean indicating whether the behavior was
put into the complete state during a prior iteration.

bool isRunnable(): Determines if a behavior is in the running state or not. Within this function
call four things are checked: (a) if the duration is set, the duration time remaining is checked for
timeout, (b) variables that are monitored for staleness are checked against (Section 7.2.5). (c)
the run conditions must be met. (d) the behavior’s decision domain (IvP domain) is a proper
subset of the helm’s configured IvP domain. See Section 6.5.1 for more detail on run conditions.

void postFlags(string flag type): This function will post flags depending on whether the value
of flag type is set to "idleflags", "runflags", "activeflags", "inactiveflags", or "endflags".
Although this function is immutable, not overloadable by subclass implementations, its effect is
indeed mutable since the flags are specified in the mission configuration *.bhv file. See Section
6.5.4 for more detail on posting flags to the MOOSDB from the helm.

7.4.2 Helm-Invoked Overloaded Functions

These are functions called by the helm. They are defined as virtual functions so that a behavior
author may overload them. Typically the bulk of writing a new behavior resides in implementing
these three functions.

IvPFunction* onRunState(): The onRunState() function is called by the helm when deemed to be

in the running state (Figure 20). The bulk of the work in implementing a new behavior is in
this function implementation, and is the subject of Section 7.6.
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void onIdleState(): This function is called by the helm when deemed to be in the idle state
(Figure 20). Many behaviors are implemented with this function left undefined, but it is a
useful hook to have in many cases.

bool setParam(string, string): This function is called by the helm when the behavior is first in-
stantiated with the set of parameter and parameter values provided in the behavior file. It is also
called by the helm within the checkUpdates () function to apply parameter updates dynamically.

7.5 Local Behavior Utility Functions

The bulk of the work done in implementing a new behavior is in the implementation of the
onIdleState() and onRunState() functions. The utility functions described below are designed
to aid in that implementation and are generally “protected” functions, that is callable only from
within the code of another function in the behavior, such as the onRunState() and onIdleState()
functions, and not invoked by the helm.

7.5.1 Summary of Implementor-Invoked Utility Functions

The following is summary of utility functions implemented at the IvPBehavior superclass level.

void setComplete(): The notion of what it means for a behavior to be “complete” is largely an
issue specific to an individual behavior. When or if this state is reached, a call to setComplete ()
can be made and end flags will be posted, and the behavior will be permanently put into the
completed state unless the perpetual parameter is set to true.

void addInfoVars(string var names): The helm will register for variables from the MOOSDB on a
need-only basis, and a behavior is obligated to inform the helm that certain variables are needed
on its behalf. A call to the addInfoVars() function can be made from anywhere with a behavior
implementation to declare needed variables. This can be one call per variable, or the string
argument can be a comma-separated list of variables. The most common point of invoking this
function is within a behavior’s constructor since needed variables are typically known at the
point of instantiation. More on this issue in Section 7.5.3.

double getBufferDoubleVal(string varname, bool& result): Query the info buffer for the latest
(double) value for a given variable named by the string argument. The bool argument indicates
whether the queried variable was found in the buffer. More on this in Section 7.5.2.

double getBufferStringVal(string varname, bool& result): Query the info buffer for the latest
(string) value for a given variable named by the string argument. The bool argument indicates
whether the queried variable was found in the buffer. More on this in Section 7.5.2.

double getBufferCurrTime(): Query the info buffer for the current buffer local time, equivalent
to the duration in seconds since the helm was launched. More on this in Section 7.5.2.

vector<double> getBufferDoubleVector(string var, bool& result): Query the info buffer for
all changes to the variable (of type double) named by the string argument, since the last iteration.
The bool argument indicates whether the queried variable was found in the buffer. More on this
in Section 7.5.2.
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vector<string> getBufferStringVector(string var, bool& result): Query the info buffer for
all changes to the variable (of type string) named by the string argument, since the last iteration.
The bool argument indicates whether the queried variable was found in the buffer. More on this
in Section 7.5.2.

void postMessage(string varname, string value, string key): The helm can post messages (variable-
value pairs) to the MOOSDB at the end of the helm iteration. Behaviors can request such
postings via a call to the postMessage() function where the first argument is the variable name,
and the second is the variable value. The optional key parameter is used in conjunction with the
duplication filter and by default is the empty string. See Section 5.7 for more on the duplication
filter.

void postMessage(string varname, double value, string key): Same as above except used when
the posted variable is of type double rather than string. The optional key parameter is used in
conjunction with the duplication filter and by default is the empty string. See Section 5.7 for
more on the duplication filter.

void postBoolMessage(string varname, bool value, string key): Same as above, except used
when the posted variable is a bool rather than string. The optional key parameter is used
in conjunction with the duplication filter and by default is the empty string. See Section 5.7 for
more on the duplication filter.

void postIntMessage(string varname, double value, string key): Same as postMessage(string,
double) above except the numerical output is rounded to the nearest integer. This, combined
with the helm’s use of the duplication filter, can reduce the number of posts to the MOOSDB.
The optional key parameter is used in conjunction with the duplication filter and by default is
the empty string. See Section 5.7 for more on the duplication filter.

void postWMessage(string warning msg): Identical to the postMessage() function except the vari-
able name is automatically set to BHV_WARNING. Provided as a matter of convenience to the caller
and for uniformity in monitoring warnings.

void postEMessage(string error msg): Similar to the postWMessage () function except the variable
name is BHV_ERROR. This call is for more serious problems noted by the behavior. It also results
in an internal state_ok bit being flipped which results in the helm posting all-stop values to the
actuators.

7.5.2 The Information Buffer

Behaviors do not have direct access to the MOOSDB - they don’t read mail, and they don’t post
changes directly, but rather through the helm as an intermediary. The information buffer, or
info_buffer, is a data structure maintained by the helm to reflect a subset of the information in
the MOOSDB and made available to each behavior. This topic is hidden from a user configuring
existing behaviors and can be safely skipped, but is an important issue for a behavior author
implementing a new behavior. The info_buffer is a data structure shared by all behaviors, each
behavior having an pointer to a single instance of the InfoBuffer class. This data structure is
maintained by the helm, primarily by reading mail from the MOOSDB and reflecting the change
onto the buffer on each helm iteration, before the helm requests input from each behavior. Each
behavior therefore has the exact same snapshot of a subset of the MOOSDB. A behavior author
needs to know two things - how to ensure that certain variables show up in the buffer, and how to
access that information from within the behavior. These two issues are discussed next.
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7.5.3 Requesting the Inclusion of a Variable in the Information Buffer

A variable can be specifically requested for inclusion in the info buffer by invoking the following
function:

void IvPBehavior::addInfoVars(string varnames)

The string argument is either a single MOOS variable or a comma-separated list of variables.
Duplicate requests are simply ignored. Typically such calls are invoked in a behavior’s constructor,
but may be done dynamically at any point after the helm is running. The helm will simply
register with the MOOSDB for the requested variable at the end of the current iteration. Certain
variables are registered for automatically on behalf of the behavior. All variables referenced in
run conditions will be registered and accessible in the buffer. Variables named in the updates and
nostarve parameters will also be automatically registered.

7.5.4 Accessing Variable Information from the Information Buffer

A variable value can be queried from the buffer with one of the following two function calls,
depending on whether the variable is of type double or string.

string IvPBehavior::getBufferStringVal(string varname, bool& result)
double IvPBehavior::getBufferDoubleVal(string varname, bool& result)

The first string argument is the variable name, and the second argument is a reference to a Boolean
variable which, upon the function return, will indicate whether the queried variable was found in
the buffer. A duration value indicating the elapsed time since the variable was last changed in the
buffer can be obtained from the following function call:

double IvPBehavior::getBufferTimeVal(string varname) ;

The string argument is the variable name. The returned value should be exactly zero if this variable
was updated by new mail received by the helm at the beginning of the current iteration. If the
variable name is not found in the buffer, the return value is -1. The “current” buffer time, equivalent
to the cumulative time in seconds since the helm was launched, can be retrieved with the following
function call:

double IvPBehavior::getBufferCurrTime()

The buffer time is a local variable of the info_buffer data structure. It is updated once at the
beginning of the helm OnNewMail () loop prior to processing all new updates to the buffer from the
MOOS mail stack, or at the beginning of the Iterate() loop if no mail is processed on the current
iteration. Thus the time-stamp returned by the above call should be exactly the same for successive
calls by all behaviors within a helm iteration.

The values returned by getBufferStringVal() and getBufferDoubleVal() represent the latest
value of the variable in the MOOSDB at the point in time when the helm began its iteration and
processed its mail stack. The value may have changed several times in the MOOSDB between
iterations, and this information may be of use to a behavior. This is particularly true when a
variable is being posted in pieces, or a sequence of delta changes to a data structure. In any event,
this information can be recovered with the following two function calls:
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vector<string> IvPBehavior::getBufferStringVector(string varname, bool& result)
vector<double> IvPBehavior::getBufferDoubleVector(string varname, bool& result)

They return all values updated to the buffer for a given variable since the last iteration in a vector
of strings or doubles respectively. The latest change is located at the highest index of the vector.
An empty vector is returned if no changes were received at the outset of the current iteration.

7.6 Overloading the onRunState() and onIdleState() Functions

The onRunState () function is declared as a virtual function in the IvPBehavior superclass intended
to be overloaded by the behavior author to accomplish the primary work of the behavior. The
primary behavior output is the objective function. This is what drives the vehicle. The objective
function is an instance of the class IvPFunction, and a behavior generates an instance and returns
a pointer to the object in the following function:

IvPFunction* onRunState()

This function is called automatically by the helm on the current iteration if the behavior is deemed
to be in the running state, as depicted in Figure 20 on page 85. The invocation of onRunState ()
does not necessarily mean an objective function is returned. The behavior may opt not to for
whatever reason, in which case it returns a null pointer. However, if it does generate a function,
the behavior is said to be in the active state. The steps comprising the typical implementation of
the onRunState () implementation can be summarized as follows:

e Get information from the info buffer, and update any internal behavior state.
e Generate any messages to be posted to the MOOSDB.
e Produce an objective function if warranted.

e Return.

The same steps hold for the onIdleState() function except for producing an objective function.
The first two steps have been discussed in detail. Accessing the info_buffer was described in
Sections 7.5.2 - 7.5.4. The functions for posting messages to the MOOSDB from within a behavior
were discussed in Section 7.5.1. Further issues regarding the posting of messages were covered in
Section 6.5.4 The remaining issue to discuss is how objective functions are generated. This is
covered in the IvPBuild Toolbox in a separate document.

7.7 Dynamic Behavior Spawning

In certain scenarios it may not be practical or possible to know in advance all the behaviors needed to
accomplish mission objectives. For example, if the helm uses a certain kind of behavior to deal with
another vehicle in its operation area, for collision avoidance or trailing etc., the identities or number
of such vehicles may not be known when the mission planner is configuring the helm’s behavior file.
One way to circumvent this problem is to design a collision avoidance behavior, for example, to
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handle all known contacts. However, this has a couple drawbacks. It would entail a degree of multi-
objective optimization be implemented within the behavior to produce an objective function that
was comprehensive across all contacts. This would likely be much more computationally expensive
than simply generating an objective function for each contact. It also may be advantageous to have
different types of collision avoidance behaviors for different contact types or collision avoidance
protocols. In any event, the helm support for dynamic behavior spawning gives behavior architects
and mission planners another potentially powerful option for implementing an autonomy system.

7.7.1 Behavior Specifications Viewed as Templates

The templating parameter may be used to turn an otherwise static behavior specification into a
template for spawning new behaviors dynamically after the helm has been launched. Instantia-
tion requests are received via the updates parameter described in Section 7.2.2. Updates received
through this variable are normally used to change behavior parameters dynamically, but they can
be further used to request the spawning of a new behavior by including the following component:

name = <new-behavior-name>

If the <new-behavior-name> is not the name of the behavior given in the behavior specification, and
if it is not the name of a behavior already presently instantiated by the helm, the helm interprets
this as a request to spawn a new behavior, if templating is enabled. Templating is enabled by
including the following component in the behavior specification:

templating = <templating-mode>

The <templating-mode> may be set to either "disallowed" (the default), "clone", or "spawn". In the
"clone" mode, the helm will instantiate a behavior immediately upon helm startup. In the "spawn"
mode, the helm will not instantiate a behavior until it receives a request to do so via the updates
parameter as described above. An example of a behavior configured to allow dynamic spawning is
given in Listing 26 on page 170, taken from the Berta example mission.

For a behavior configured with templating enabled in the "spawn" mode, the helm will not spawn
a behavior at the helm startup time. However, internally it will indeed spawn such a behavior, check
that it can be found and built as configured, and then destroy it immediately. This means that the
behavior configuration found in the .bhv configuration file must not have an invalid configuration.
It is preferable to know at helm launch time that a behavior is misconfigured, rather than waiting
for the spawning event to occur perhaps hours into a mission and being surprised that a critical
behavior, such as collision avoidance, failed to be spawned.

7.7.2 Behavior Completion and Removal from the Helm

All behaviors, whether statically spawned upon helm startup, or dynamically spawned during the
mission, are capable of dying and being removed from the helm. Death and removal are part of
the consequences of a behavior entering the completed state. Behavior run states were discussed
in Section 6.5.3 on page 70. A completed behavior configured with perpetual=true will not die
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upon completion. Once a behavior dies, its name is removed from the helm’s internal registry of
currently-spawned behaviors and a new behavior by the same name may be spawned at a future
time.

7.7.3 Example Missions with Dynamic Behavior Spawning

Two example missions are provided that demonstrate the workings of dynamic behavior spawning,
The Echo mission in Section 10.4, and the Berta mission in Section 10.5. The Echo mission involves
a single vehicle with its helm configured to spawn dynamic behaviors of the type BHV_BearingLine.
These behaviors do nothing more than post a viewable line segment to the MOOSDB between
ownship and a point in the operation area. The interesting thing about this example is that the
mission is configured with an event script (via uTimerScript) to automatically cue the spawning of
5000 behaviors over about one hour. Each behavior has a random duration of less than a minute,
so behaviors are spawning and dying quite rapidly with visual confirmation via the viewable line
segments.

The second example mission, the Berta mission, involves two vehicles that are loitering near one
another. Periodically their loiter assignments are randomly altered (again through uTimerScript).
The change in loiter locations repeatedly puts them on an unpredictable and random near-collision
course and each vehicle needs to spawn a collision avoidance behavior. The interesting thing
about this scenario is that the behavior, the BHV_AvoidCollision behavior, is an actual behavior of
common use, unlike the BHV_BearingLine behavior used in the Echo mission. This example also uses
the pBasicContactMgr to coordinate the receiving of contact reports with helm behavior spawning.

7.7.4 Examining the Helm’s Life Event History

Behavior spawning, and behavior completion and removal from the helm, are two types of life events
the helm takes note of and posts in the MOOS variable IVPHELM_LIFE EVENT. A third type of life
event occurs when a behavior spawning is aborted due to either a syntax error or a name collision.
Monitoring life events at run time is possible by scoping on the variable IVPHELM LIFE_EVENT with
either uXMS or uMs. A better method is available via the uHelmScope application (versions 4.1 or
later). It automatically registers for the IVPHELM_LIFE_EVENT variable and will generate a formatted
report like that shown in Listing 16. In the post-mission analysis phase, the aloghelm application
may be used to examine the life event history and will generate the same formatted report from a
given alog file.

Listing 16 - A Life Event History generated with either the uHelmScope or aloghelm utilities.

0 stk sk ke sk sk o ke ok sk s sk sk s ok sk sk sk sk s ksl sk e ok sk sk e ks sk e ok sk sk e ok sk sk ek sk ok ek sk ok

1 * Summary of Behavior Life Events *

2 stk kokskok ksl kskskok stk skl stk ok skl ok stk sk ok stk sk ok sk sk sk ok skok sk ok sk ok

3

4 Time Iter Event Behavior Behavior Type Spawning Seed

5 ______ —_———— ———_—.— - —_ —_———— ———_—— e —_ —_ pp—
6 47.84 1 spawn loiter BHV_Loiter helm startup

7 47.84 1 spawn waypt_return BHV_Waypoint helm startup

8 47.84 1 spawn station-keep BHV_StationKeep helm startup

9 101.79 218 spawn avd_henry BHV_AvoidCollision name=avd_henry#contact=henry
10 161.20 423 death avd_henry BHV_AvoidCollision
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11 297.07 969 spawn avd_henry BHV_AvoidCollision name=avd_henry#contact=henry
12 351.80 1159 death avd_henry BHV_AvoidCollision

13 461.37 1599 spawn avd_henry BHV_AvoidCollision name=avd_henry#contact=henry
14 516.51 1795 death avd_henry BHV_AvoidCollision

15 644.94 2311 spawn avd_henry BHV_AvoidCollision name=avd_henr